大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
今天就跟大家聊聊有关如何实现网址池URL Pool,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。
创新互联服务项目包括双河网站建设、双河网站制作、双河网页制作以及双河网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,双河网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到双河省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!对于比较大型的爬虫来说,URL管理的管理是个核心问题,管理不好,就可能重复下载,也可能遗漏下载。这里,我们设计一个URL池来管理URL。
这个URL池就是一个生产者 - 消费者模式:
生产者 - 消费者流程图
依葫芦画瓢,URLPool就是这样的
设计的网络爬虫URLPool
我们从网址池的使用目的出发来设计网址池的接口,它应该具有以下功能:
往池子里面添加URL;
从池子里面取URL以下载;
池子内部要管理URL状态;
前面我提到的网址的状态有以下4中:
已经下载成功
下载多次失败无需再下载
正在下载
下载失败要再次尝试
前两个是永久状态,也就是已经下载成功的不再下载,多次尝试后仍失败的也就不再下载,它们需要永久存储起来,以便爬虫重启后,这种永久状态记录不会消失,已经成功下载的网址不再被重复下载永久存储的方法有很多种:
比如,直接写入文本文件,但它不利于查找某个URL是否已经存在文本中;
比如,直接写入的MySQL等关系型数据库,它利用查找,但是速度又比较慢,
比如,使用键值数据库,查找和速度都符合要求,是不错的选择!
我们这个URL池选用LevelDB来作为URL状态的永久存储.LevelDB是谷歌开源的一个键值数据库,速度非常快,同时自动压缩数据。我们用它先来实现一个UrlDB作为永久存储数据库。
import leveldb class UrlDB: '''Use LevelDB to store URLs what have been done(succeed or faile) ''' status_failure = b'0' status_success = b'1' def __init__(self, db_name): self.name = db_name + '.urldb' self.db = leveldb.LevelDB(self.name) def load_from_db(self, status): urls = [] for url, _status in self.db.RangeIter(): if status == _status: urls.append(url) return urls def set_success(self, url): if isinstance(url, str): url = url.encode('utf8') try: self.db.Put(url, self.state_success) s = True except: s = False return s def set_failure(self, url): if isinstance(url, str): url = url.encode('utf8') try: self.db.Put(url, self.status_failure) s = True except: s = False return s def has(self, url): if isinstance(url, str): url = url.encode('utf8') try: attr = self.db.Get(url) return attr except: pass return False
UrlDB将被UrlPool使用,主要有三个方法被使用:
has(url)查看是否已经存在某url
set_success(url)存储url状态为成功
set_failure(url)存储url状态为失败
而正在下载和下载失败次数这两个URL的状态只需暂时保存在内容即可,我们把它们放到UrlPool这个类中进行管理接着我们来实现网址池:
#Author: veelion import pickle import leveldb import time import urllib.parse as urlparse class UrlPool: '''URL Pool for crawler to manage URLs ''' def __init__(self, pool_name): self.name = pool_name self.db = UrlDB(pool_name) self.pool = {} # host: set([urls]), 记录待下载URL self.pending = {} # url: pended_time, 记录已被pend但还未被更新状态(正在下载)的URL self.failure = {} # url: times, 记录失败的URL的次数 self.failure_threshold = 3 self.pending_threshold = 60 # pending的大时间,过期要重新下载 self.in_mem_count = 0 self.max_hosts = ['', 0] # [host: url_count] 目前pool中url最多的host及其url数量 self.hub_pool = {} # {url: last_query_time} self.hub_refresh_span = 0 self.load_cache() def load_cache(self,): path = self.name + '.pkl' try: with open(path, 'rb') as f: self.pool = pickle.load(f) cc = [len(v) for k, v in self.pool] print('saved pool loaded! urls:', sum(cc)) except: pass def set_hubs(self, urls, hub_refresh_span): self.hub_refresh_span = hub_refresh_span self.hub_pool = {} for url in urls: self.hub_pool[url] = 0 def set_status(self, url, status_code): if url in self.pending: self.pending.pop(url) if status_code == 200: self.db.set_success(url) return if status_code == 404: self.db.set_failure(url) return if url in self.failure: self.failure[url] += 1 if self.failure[url] > self.failure_threshold: self.db.set_failure(url) self.failure.pop(url) else: self.add(url) else: self.failure[url] = 1 def push_to_pool(self, url): host = urlparse.urlparse(url).netloc if not host or '.' not in host: print('try to push_to_pool with bad url:', url, ', len of ur:', len(url)) return False if host in self.pool: if url in self.pool[host]: return True self.pool[host].add(url) if len(self.pool[host]) > self.max_hosts[1]: self.max_hosts[1] = len(self.pool[host]) self.max_hosts[0] = host else: self.pool[host] = set([url]) self.in_mem_count += 1 return True def add(self, url, always): if always: return self.push_to_pool(url) pended_time = self.pending.get(url, 0) if time.time() - pended_time < self.pending_threshold: print('being downloading:', url) return if self.db.has(url): return if pended_time: self.pending.pop(url) return self.push_to_pool(url) def addmany(self, urls, always=False): if isinstance(urls, str): print('urls is a str !!!!', urls) self.add(urls, always) else: for url in urls: self.add(url, always) def pop(self, count, hubpercent=50): print('\n\tmax of host:', self.max_hosts) # 取出的url有两种类型:hub=1, 普通=2 url_attr_url = 0 url_attr_hub = 1 # 1\. 首先取出hub,保证获取hub里面的最新url. hubs = {} hub_count = count * hubpercent // 100 for hub in self.hub_pool: span = time.time() - self.hub_pool[hub] if span < self.hub_refresh_span: continue hubs[hub] = url_attr_hub # 1 means hub-url self.hub_pool[hub] = time.time() if len(hubs) >= hub_count: break # 2\. 再取出普通url # 如果某个host有太多url,则每次可以取出3(delta)个它的url if self.max_hosts[1] * 10 > self.in_mem_count: delta = 3 print('\tset delta:', delta, ', max of host:', self.max_hosts) else: delta = 1 left_count = count - len(hubs) urls = {} for host in self.pool: if not self.pool[host]: # empty_host.append(host) continue if self.max_hosts[0] == host: while delta > 0: url = self.pool[host].pop() self.max_hosts[1] -= 1 if not self.pool[host]: break delta -= 1 else: url = self.pool[host].pop() urls[url] = url_attr_url self.pending[url] = time.time() if len(urls) >= left_count: break self.in_mem_count -= len(urls) print('To pop:%s, hubs: %s, urls: %s, hosts:%s' % (count, len(hubs), len(urls), len(self.pool))) urls.update(hubs) return urls def size(self,): return self.in_mem_count def empty(self,): return self.in_mem_count == 0 def __del__(self): path = self.name + '.pkl' try: with open(path, 'wb') as f: pickle.dump(self.pool, f) print('self.pool saved!') except: pass
UrlPool的实现有些复杂,且听我一一分解。
先看看它的主要成员及其用途:
self.db是一个UrlDB的示例,用来永久存储url的永久状态
self.pool是用来存放url的,它是一个字典(dict)结构,key是url的主机,值是一个用来存储这个主机的所有url的集合(set)。
self.pending用来管理正在下载的url状态。它是一个字典结构,key是url,value是它被pop的时间戳。当一个url被pop()时,就是它被下载的开始。当该url被set_status()时,就是下载结束的时刻。如果一个url被添加()入池时,发现它已经被套的时间超过pending_threshold时,就可以再次入库等待被下载。否则,暂不入池。
self.failue是一个字典,key是url,value是识别的次数,超过failure_threshold就会被永久记录为失败,不再尝试下载。
hub_pool是一个用来存储hub page面的字典,key是hub url,value是上次刷新该hub页面的时间。
以上成员就构成了我们这个网址池的数据结构,再通过以下成员方法对这个网址池进行操作:
1. load_cache()和dump_cache()对网址池进行缓存
load_cache()在init()中调用,创建池的时候,尝试去加载上次退出时缓存的URL池;
dump_cache()在del()中调用,也就是在网址池销毁前(比如爬虫意外退出),把内存中的URL pool缓存到硬盘。
这里使用了pickle模块,这是一个把内存数据序列化到硬盘的工具。
** 2. set_hubs()方法设置hub URL **
hub网页就是像百度新闻那样的页面,整个页面都是新闻的标题和链接,是我们真正需要的新闻的聚合页面,并且这样的页面会不断更新,把最新的新闻聚合到这样的页面,我们称它们为hub页面,其URL就是hub url。在新闻爬虫中添加大量的这样的url,有助于爬虫及时发现并抓取最新的新闻。
该方法就是将这样的hub url列表传给网址池,在爬虫从池中取URL时,根据时间间隔(self.hub_refresh_span)来取集枢纽网址。
** 3. add(),addmany(),push_to_pool()对网址池进行入池操作**
把url放入网址池时,先检查内存中的self.pending是否存在该url,即是否正在下载该。网址如果正在下载就不入池;如果正下载或已经超时,就进行到下一步;
接着检查该网址是否已经在性LevelDB中存在,存在就表明之前已经成功下载或彻底失败,不再下载了也不入池。如果没有则进行到下一步;
最后通过push_to_pool()把url放入self.pool中。存放的规则是,按照url的主机进行分类,相同主机的url放到一起,在取出时 -个主取一个url,尽量保证每次取出的一批url都是指向不同的服务器的,这样做的目的也是为了尽量减少对抓取目标服务器的请求压力。力争做一个服务器友好的爬虫O(∩∩ _∩)O
4. pop()对网址池进行出池操作
爬虫通过该方法,从网址池中获取一批url去下载。取出url分两步:
第一步,先从self.hub_pool中获得,方法是遍历hub_pool,检查每个集线器-URL距上次被弹出的时间间隔是否超过毂页面刷新间隔(self.hub_refresh_span),来决定毂-URL是否应该被弹出。
第二步,从self.pool中获取。前面push_to_pool中,介绍了流行的原则,就是每次取出的一批URL都是指向不同服务器的,有了self.pool的特殊数据结构,安装这个原则获取网址就简单了,按主机(自我.pool的键)遍历self.pool即可。
5. set_status()方法设置网址池中url的状态
其参数status_code是http响应的状态码。爬虫在下载完URL后进行url状态设置。
首先,把该url成self.pending中删除,已经下载完毕,不再是未决状态;
接着,根据STATUS_CODE来设置URL状态,200和404的直接设置为永久状态;其它状态就记录失败次数,并再次入池进行后续下载尝试。
通过以上成员变量和方法,我们把这个网址池(UrlPool)解析的清清楚楚。小猿们可以毫不客气的收藏起来,今后在写爬虫时可以用它方便的管理URL,并且这个实现只有一个PY文件,方便加入到任何项目中。
1.网址的管理
网址的管理,其目的就是为了:不重抓,不漏抓。
2. pickle模块
把内存数据保存到硬盘,再把硬盘数据重新加载到内存,这是很多程序停止和启动的必要步骤.pickle就是实现数据在内存和硬盘之间转移的模块。
3. leveldb模块
这是一个经典且强大的硬盘型key-value数据库,非常适合url-status这种结构的存储。
4. urllib.parse
解析网址的模块,在处理url时首先想到的模块就应该是它。
看完上述内容,你们对如何实现网址池URL Pool有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注创新互联-成都网站建设公司行业资讯频道,感谢大家的支持。