大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
今天就跟大家聊聊有关如何在pytorch中使用transforms模块,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名与空间、雅安服务器托管、营销软件、网站建设、澜沧网站维护、网站推广。pytorch中的transforms模块中包含了很多种对图像数据进行变换的函数
data_transforms = transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])
从上面的data_transforms变量中我们能够看出进行了多种变换,而Compose方法是将多种变换组合起来。data_transforms中一共包含了四个变换,前两个是对PILImage进行的,分别对其进行随机大小(默认原始图像大小的0.08-1.0)和随机宽高比(默认原始图像宽高比的3/4-4/3)的裁剪,之后resize到指定大小224;以及对原始图像进行随机(默认0.5概率)的水平翻转。
第三个transforms.ToTensor()的变换操作是关键一步,它将PILImage转变为torch.FloatTensor的数据形式,这种数据形式一定是C x H x W的图像格式加上[0,1]的大小范围。它将颜色通道这一维从第三维变换到了第一维。
最后的Normalize变换是对tensor这种数据格式进行的,它的操作是用给定的均值和标准差分别对每个通道的数据进行正则化。具体来说,给定均值(M1,...,Mn),给定标准差(S1,..,Sn),其中n是通道数(一般是3),对每个通道进行如下操作:
output[channel] = (input[channel] - mean[channel]) / std[channel]
最后需要强调一点的是,这几个变换的先后顺序有一定的讲究,因为不同的方法所处理的对象不一样,前两种变换是对PILImage进行的,而Normalize则是对tensor进行的,所以处理PILImage的变换方法(大多数方法)都需要放在ToTensor方法之前,而处理tensor的方法(比如Normalize方法)就要放在ToTensor方法之后。
看完上述内容,你们对如何在pytorch中使用transforms模块有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注创新互联成都网站设计公司行业资讯频道,感谢大家的支持。
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。