大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
使用python与caffe怎么改变通道顺序?相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。
创新互联服务紧随时代发展步伐,进行技术革新和技术进步,经过十余年的发展和积累,已经汇集了一批资深网站策划师、设计师、专业的网站实施团队以及高素质售后服务人员,并且完全形成了一套成熟的业务流程,能够完全依照客户要求对网站进行做网站、网站制作、建设、维护、更新和改版,实现客户网站对外宣传展示的首要目的,并为客户企业品牌互联网化提供全面的解决方案。把通道放在前面:
image = cv2.imread(path + file) image = cv2.resize(image, (48, 48), interpolation=cv2.INTER_CUBIC) aaaa= np.transpose(image,(2, 0, 1)) print(aaaa)
图像原来shape:(48, 48, 3),改之后shape:(3,48,48)
注意:reshape不能解决通道转换问题
pycaffe做识别时通道转换问题:
要注意一点的就是:Caffe中彩色图像的通道是BGR格式,图像存储是【0,255】
1.caffe.io.load_image方式 view plai cop
image = caffe.io.load_image(image_file) #加载图片
使用caffe.io.load_image()读进来的是RGB格式和0~1(float)
所以在进行识别之前要在transformer中设置transformer.set_raw_scale('data',255)(缩放至0~255)
以及transformer.set_channel_swap('data',(2,1,0)(将RGB变换到BGR)
# python中将图片存储为[0, 1],而caffe中将图片存储为[0, 255],所以需要一个转换 transformer.set_raw_scale('data', 255) # 缩放到[0,255]之间 transformer.set_channel_swap('data', (2,1,0)) #交换通道,将图片由RGB变为BGR(caffe中图片是BGR格式,而原始格式是RGB,所以要转化)
2.使用cv2.imread()来读取图片
cv2.imread()接口读图像,读进来直接是BGR 格式and 0~255
所以不需要再缩放到【0,255】和通道变换【2,1,0】,不需要transformer.set_raw_scale('data',255)和transformer.set_channel_swap('data',(2,1,0))
3.使用PIL来读取图片
对于彩色图像,不管其图像格式是PNG,还是BMP,或者JPG,在PIL中,使用Image模块的open()函数打开后,返回的图像对象的模式都是“RGB”。而对于灰度图像,不管其图像格式是PNG,还是BMP,或者JPG,打开后,其模式为“L”。所以需要转换格式,但不需要缩放到[0,255]
data = np.array(Image.open(self.dataRoot+img_list)) data = np.transpose(data,(2,0,1))#转换通道 data[[0,2],...] = data[[2,0],...] #RGB→BGR
4.对于matlab来说
Caffe中的blobs格式是N*C*H*W,分别是数量Number,通道数Channel,以及宽度Height和宽度Width
而matlab中是先宽后高,即[w,h],图像的通道是RGB
所以需要进行相应的转换:
im_data = im (:,:,[3,2,1]) ; %RGB to BGR
im_data = permute(im_data, [2,1,3]); %旋转高度和宽度
最后,分享一个Caffe的典型python识别代码:
# -*- coding: utf-8 -*- """ Created on Sun May 28 16:00:47 2017 @author: fancp,#windows下CPU模式 """ import numpy as np import caffe import sys caffe_root = 'F:/Caffe' #########你自己的Caffe路径 sys.path.insert(0, caffe_root + '/python') size = 227 #训练的图片尺寸 image_file = 'F:/.../.../nihao.jpg'#图片路径 model_def = 'F:/.../.../deploy.prototxt'#deploy模型文件位置 model_weights = 'F:/.../.../_iter_20000.caffemodel'#训练完的模型位置 net = caffe.Net(model_def, model_weights, caffe.TEST) # 加载均值文件 mu = np.load(caffe_root + '/python/caffe/imagenet/ilsvrc_2012_mean.npy') ###caffe 自带的文件 mu = mu.mean(1).mean(1) # average over pixels to obtain the mean (BGR) pixel values ###########################下面这5句等同与上面两句,选择其一################# #blob = caffe.proto.caffe_pb2.BlobProto() #mean_data = open( 'mean.binaryproto' , 'rb' ).read() #blob.ParseFromString(mean_data) #mu = np.array(caffe.io.blobproto_to_array(blob)) #mu = mu.mean(1).mean(1).mean(1) ############################################################################## #图片预处理 transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) ##设定图片的shape格式(1,3,227,227),大小由deploy 文件指定 # python读取的图片文件格式为H×W×K,需转化为K×H×W transformer.set_transpose('data', (2,0,1)) #改变维度的顺序,由原始图片(227,227,3)变为(3,227,227) transformer.set_mean('data', mu) # 每个通道减去均值 # python中将图片存储为[0, 1],而caffe中将图片存储为[0, 255],所以需要一个转换 transformer.set_raw_scale('data', 255) # 缩放到【0,255】之间 transformer.set_channel_swap('data', (2,1,0)) #交换通道,将图片由RGB变为BGR(caffe中图片是BGR格式,而原始格式是RGB,所以要转化) net.blobs['data'].reshape(1,3,size, size) # 将输入图片格式转化为合适格式(与deploy文件相同) #上面这句,第一参数:图片数量 第二个参数 :通道数 第三个参数:图片高度 第四个参数:图片宽度 image = caffe.io.load_image(image_file) #加载图片 # 用上面的transformer.preprocess来处理刚刚加载图片 net.blobs['data'].data[...] = transformer.preprocess('data', image) ### perform classification caffe.set_mode_cpu() output = net.forward() #print output output_prob = output['prob'][0].argmax() # 给出概率最高的是第几类,需要自己对应到我们约定的类别去Python的优点有哪些
1、简单易用,与C/C++、Java、C# 等传统语言相比,Python对代码格式的要求没有那么严格;2、Python属于开源的,所有人都可以看到源代码,并且可以被移植在许多平台上使用;3、Python面向对象,能够支持面向过程编程,也支持面向对象编程;4、Python是一种解释性语言,Python写的程序不需要编译成二进制代码,可以直接从源代码运行程序;5、Python功能强大,拥有的模块众多,基本能够实现所有的常见功能。
看完上述内容,你们掌握使用python与caffe怎么改变通道顺序的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注创新互联行业资讯频道,感谢各位的阅读!