大橙子网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

nosql弱一致性,nosql最终一致性

什么是数据库的一致性?一致性弱意味着什么?NoSQL 的弱一致性又为什么是可以被接受的?

举例说明如下:

十余年专注建站、设计、互联网产品按需定制设计服务,业务涵盖品牌网站设计商城网站建设小程序设计、软件系统开发、成都App制作等。凭借多年丰富的经验,我们会仔细了解每个客户的需求而做出多方面的分析、设计、整合,为客户设计出具风格及创意性的商业解决方案,创新互联更提供一系列网站制作和网站推广的服务,以推动各中小企业全面信息数字化,并利用创新技术帮助各行业提升企业形象和运营效率。

银行A账户向B账户汇款100元,数据库执行如下过程

从A账户减少100元,然后在B账户增加100元,这个过程称为一个事务

但是:

如果从A账户减少100元后系统出故障了或者出现了其他意外造成B账户没有增加100元(这种事情相信无论是谁遇到也会很无语吧?好吧言归正传)这种情况称为事务不一致,因为一个事务没有做完,所以数据库会将整个过程回滚,你可以理解为就当什么事也没发生过,这种回滚机制就是事务的一种特征,目的就是为了保持数据库的数据库的事务一致性。

nosql与rdbms直接有什么区别

NoSQL与RDBMS的九点区别联系 

1 理解ACID与BASE的区别(ACID是关系型数据库强一致性的四个要求,而BASE是NoSQL数据库通常对可用性及一致性的弱要求原则,它们的意思分别是,ACID:atomicity, consistency, isolation, durability;BASE:Basically Available, Soft-state, Eventually Consistent。同时有意思的是ACID在英语里意为酸,BASE意思为碱)

2 理解持久化与非持久化的区别。这么说是因为有的NoSQL系统是纯内存存储的。

3 你必须意识到传统有关系型数据库与NoSQL系统在数据结构上的本质区别。传统关系型数据库通常是基于行的表格型存储,而NoSQL系统包括了列式存储(Cassandra)、key/value存储(Memcached)、文档型存储(CouchDB)以及图结构存储(Neo4j)

4与传统关系数据库有统一的SQL语言操作接口不同,NoSQL系统通常有自己特有的API接口。

5 在架构上,你必须搞清楚,NoSQL系统是被设计用于成百上千台机器的集群中的,而非共享型数据库系统的架构。

6在NoSQL系统中,可能你得习惯一下不知道你的数据具体存在何处的情况。

7 在NoSQL系统中,你最好习惯它的弱一致性。”eventually consistent”(最终一致性)正是BASE原则中的重要一项。比如在Twitter,你在Followers列表中经常会感受到数据的延迟。

8 在NoSQL系统中,你要理解,很多时候数据并不总是可用的。

9 你得理解,有的方案是拥有分区容忍性的,有的方案不一定有。

传统数据库与新型数据库的优缺点

一:传统数据库

(1)传统索引不适于海量数据    

传统行存数据库索引需要手工设定,对应用不完全透明,随场景和需求的变化需要不断调整,人工维护成本很高。并且传统索引占用存储空间很大,甚至高于数据本身,造成查询效率的下降。

(2)数据装载速度慢

因为索引需要重新创建,加载性能会变的很糟糕。分析型架构系统要解决这些个问题,必须最大限度地减少磁盘 I/O ,提升查询效率,减小人工维护成本。南大通用分析型数据库GBase8a (以下简称GBase 8a)通过列存储模式、数据压缩、智能化的索引、并行处理、并发控制、高效的查询优化器等技术,使得上述问题得到有效解决。以下各节将描述 GBase 8a 的创新架构如何实现这些目标。

二:新型数据库

新型数据库采用分布式并行计算架构,部署于X86通用服务器,满足大数据实时交易需求,成本低、扩展性高,突破了传统数据库性能瓶颈。

分布式非关系型数据库技术创新

非关系型数据库即NoSQL,抛弃了关系数据库复杂的关系操作、事务处理等功能,仅提供简单的键值对(Key, Value)数据的存储与查询,换取高扩展性和高性能,满足论坛、博客、SNS、微博等互联网类应用场景下针对海量数据的简单操作需求。主要技术创新为:

(1) 简单的数据操作换取高效响应。NoSQL仅支持按照Key(关键字)来存储和查询Value(数据),不支持对非关键字数据列的高效查询;因数据操作简单、数据间一般不需要关联操作,故系统可支持高并发和较快的响应速度。

(2) 多种一致性策略满足业务需求。不同于传统关系型数据库仅支持强一致性策略,NoSQL还支持弱一致性和最终一致性等多种策略,可根据应用场景进行对应配置。例如,对写入操作频繁,但数据读取最新版本要求并不严格的应用,如互联网网页数据的存储和分析应用,可以采用最终一致性策略;而对订购关系存储的应用,则必须用强一致性策略,保证总是读取最新版本数据

什么是NoSQL数据库?

2. 什么是NoSQL?

2.1 NoSQL 概述

NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,

泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题,包括超大规模数据的存储。

(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据)。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。

2.2 NoSQL代表

MongDB、 Redis、Memcache

3. 关系型数据库与NoSQL的区别?

3.1 RDBMS

高度组织化结构化数据

结构化查询语言(SQL)

数据和关系都存储在单独的表中。

数据操纵语言,数据定义语言

严格的一致性

基础事务

ACID

关系型数据库遵循ACID规则

事务在英文中是transaction,和现实世界中的交易很类似,它有如下四个特性:

A (Atomicity) 原子性

原子性很容易理解,也就是说事务里的所有操作要么全部做完,要么都不做,事务成功的条件是事务里的所有操作都成功,只要有一个操作失败,整个事务就失败,需要回滚。比如银行转账,从A账户转100元至B账户,分为两个步骤:1)从A账户取100元;2)存入100元至B账户。这两步要么一起完成,要么一起不完成,如果只完成第一步,第二步失败,钱会莫名其妙少了100元。

C (Consistency) 一致性

一致性也比较容易理解,也就是说数据库要一直处于一致的状态,事务的运行不会改变数据库原本的一致性约束。

I (Isolation) 独立性

所谓的独立性是指并发的事务之间不会互相影响,如果一个事务要访问的数据正在被另外一个事务修改,只要另外一个事务未提交,它所访问的数据就不受未提交事务的影响。比如现有有个交易是从A账户转100元至B账户,在这个交易还未完成的情况下,如果此时B查询自己的账户,是看不到新增加的100元的

D (Durability) 持久性

持久性是指一旦事务提交后,它所做的修改将会永久的保存在数据库上,即使出现宕机也不会丢失。

3.2 NoSQL

代表着不仅仅是SQL

没有声明性查询语言

没有预定义的模式

键 - 值对存储,列存储,文档存储,图形数据库

最终一致性,而非ACID属性

非结构化和不可预知的数据

CAP定理

高性能,高可用性和可伸缩性

分布式数据库中的CAP原理(了解)

CAP定理:

Consistency(一致性), 数据一致更新,所有数据变动都是同步的

Availability(可用性), 好的响应性能

Partition tolerance(分区容错性) 可靠性

P: 系统中任意信息的丢失或失败不会影响系统的继续运作。

定理:任何分布式系统只可同时满足二点,没法三者兼顾。

CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求,

因此,根据 CAP 原理将 NoSQL 数据库分成了满足 CA 原则、满足 CP 原则和满足 AP 原则三 大类:

CA - 单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强大。

CP - 满足一致性,分区容忍性的系统,通常性能不是特别高。

AP - 满足可用性,分区容忍性的系统,通常可能对一致性要求低一些。

CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。

而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。

所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。

说明:C:强一致性 A:高可用性 P:分布式容忍性

举例:

CA:传统Oracle数据库

AP:大多数网站架构的选择

CP:Redis、Mongodb

注意:分布式架构的时候必须做出取舍。

一致性和可用性之间取一个平衡。多余大多数web应用,其实并不需要强一致性。

因此牺牲C换取P,这是目前分布式数据库产品的方向。

4. 当下NoSQL的经典应用

当下的应用是 SQL 与 NoSQL 一起使用的。

代表项目:阿里巴巴商品信息的存放。

去 IOE 化。

ps:I 是指 IBM 的小型机,很贵的,好像好几万一台;O 是指 Oracle 数据库,也很贵的,好几万呢;M 是指 EMC 的存储设备,也很贵的。

难点:

数据类型多样性。

数据源多样性和变化重构。

数据源改造而服务平台不需要大面积重构。

大数据时代数据管理方式研究

大数据时代数据管理方式研究

1数据管理技术的回顾

数据管理技术主要经历了人工管理阶段、文件系统阶段和数据库系统阶段。随着数据应用领域的不断扩展,数据管理所处的环境也越来越复杂,目前广泛流行的数据库技术开始暴露出许多弱点,面临着许多新的挑战。

1.1 人工管理阶段

20 世纪 50 年代中期,计算机主要用于科学计算。当时没有磁盘等直接存取设备,只有纸带、卡片、磁带等外存,也没有操作系统和管理数据的专门软件。该阶段管理的数据不保存、由应用程序管理数据、数据不共享和数据不具有独立性等特点。

1.2 文件系统阶段

20 世纪 50 年代后期到 60 年代中期,随着计算机硬件和软件的发展,磁盘、磁鼓等直接存取设备开始普及,这一时期的数据处理系统是把计算机中的数据组织成相互独立的被命名的数据文件,并可按文件的名字来进行访问,对文件中的记录进行存取的数据管理技术。数据可以长期保存在计算机外存上,可以对数据进行反复处理,并支持文件的查询、修改、插入和删除等操作。其数据面向特定的应用程序,因此,数据共享性、独立性差,且冗余度大,管理和维护的代价也很大。

1.3数据库阶段

20 世纪 60 年代后期以来,计算机性能得到进一步提高,更重要的是出现了大容量磁盘,存储容量大大增加且价格下降。在此基础上,才有可能克服文件系统管理数据时的不足,而满足和解决实际应用中多个用户、多个应用程序共享数据的要求,从而使数据能为尽可能多的应用程序服务,这就出现了数据库这样的数据管理技术。数据库的特点是数据不再只针对某一个特定的应用,而是面向全组织,具有整体的结构性,共享性高,冗余度减小,具有一定的程序与数据之间的独立性,并且对数据进行统一的控制。

2大数据时代的数据管理技术

大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据有 3 个 V,一是大量化(Volume),数据量是持续快速增加的,从 TB级别,跃升到 PB 级别;二是多样化(Variety),数据类型多样化,结构化数据已被视为小菜一碟,图片、音频、视频等非结构化数据正以传统结构化数据增长的两倍速快速创建;三是快速化 (Velocity),数据生成速度快,也就需要快速的处理能力,因此,产生了“1 秒定律”,就是说一般要在秒级时间范围内给出分析结果,时间太长就失去价值了,这个速度要求是大数据处理技术和传统的数据挖掘技术最大的区别。

2.1 关系型数据库(RDBMS)

20 世纪 70 年代初,IBM 工程师 Codd 发表了著名的论文“A Relational Model of Data for Large Shared DataBanks”,标志着关系数据库时代来临。关系数据库的理论基础是关系模型,是借助于集合代数等数学概念和方法来处理数据库中的数据,现实世界中的实体以及实体之间的联系非常容易用关系模型来表示。容易理解的模型、容易掌握的查询语言、高效的优化器、成熟的技术和产品,使得关系数据库占据了数据库市场的绝对的统治地位。随着互联网 web2.0 网站的兴起,半结构化和非结构化数据的大量涌现,传统的关系数据库在应付 web2.0 网站特别是超大规模和高并发的 SNS(全称 Social Networking Services,即社会性网络服务) 类型的 web2.0 纯动态网站已经显得力不从心,暴露了很多难以克服的问题。

2.2 noSQL数据库

顺应时代发展的需要产生了 noSQL数据库技术,其主要特点是采用与关系模型不同的数据模型,当前热门的 noSQL数据库系统可以说是蓬勃发展、异军突起,很多公司都热情追捧之,如:由 Google 公司提出的 Big Table 和 MapReduce 以及 IBM 公司提出的 Lotus Notes 等。不管是那个公司的 noSQL数据库都围绕着大数据的 3 个 V,目的就是解决大数据的 3个 V 问题。因此,在设计 noSQL 时往往考虑以下几个原则,首先,采用横向扩展的方式,通过并行处理技术对数据进行划分并进行并行处理,以获得高速的读写速度;其次,解决数据类型从以结构化数据为主转向结构化、半结构化、非结构化三者的融合的问题;再次,放松对数据的 ACID 一致性约束,允许数据暂时出现不一致的情况,接受最终一致性;最后,对各个分区数据进行备份(一般是 3 份),应对节点失败的状况等。

对数据的应用可以分为分析型应用和操作型应用,分析型应用主要是指对大量数据进行分类、聚集、汇总,最后获得数据量相对小的分析结果;操作型应用主要是指对数据进行增加、删除、修改和查询以及简单的汇总操作,涉及的数据量一般比较少,事务执行时间一般比较短。目前数据库可分为关系数据库和 noSQL数据库,根据数据应用的要求,再结合目前数据库的种类,所以目前数据库管理方式主要有以下 4 类。

(1)面向操作型的关系数据库技术。

首先,传统数据库厂商提供的基于行存储的关系数据库系统,如 DB2、Oracle、SQL Server 等,以其高度的一致性、精确性、系统可恢复性,在事务处理方面仍然是核心引擎。其次,面向实时计算的内存数据库系统,如 Hana、Timesten、Altibase 等通过把对数据并发控制、查询和恢复等操作控制在内存内部进行,所以获得了非常高的性能,在很多特定领域如电信、证券、网管等得到普遍应用。另外,以 VoltDB、Clustrix 和NuoDB 为代表的 new SQL 宣称能够在保持 ACDI 特性的同时提高了事务处理性能 50 倍 ~60 倍。

(2)面向分析型的关系数据库技术。

首先,TeraData 是数据仓库领域的领头羊,Teradata 在整体上是按 Shared Nothing 架构体系进行组织的,定位就是大型数据仓库系统,支持较高的扩展性。其次,面向分析型应用,列存储数据库的研究形成了另一个重要的潮流。列存储数据库以其高效的压缩、更高的 I/O 效率等特点,在分析型应用领域获得了比行存储数据库高得多的性能。如:MonetDB 和 Vertica是一个典型的基于列存储技术的数据库系统。

(3)面向操作型的 noSQL 技术。

有些操作型应用不受 ACID 高度一致性约束,但对大数据处理需要处理的数据量非常大,对速度性能要求也非常高,这样就必须依靠大规模集群的并行处理能力来实现数据处理,弱一致性或最终一致性就可以了。这时,操作型 noSQL数据库的优点就可以发挥的淋漓尽致了。如,Hbase 一天就可以有超过 200 亿个到达硬盘的读写操作,实现对大数据的处理。另外,noSQL数据库是一个数据模型灵活、支持多样数据类型,如对图数据建模、存储和分析,其性能、扩展性是关系数据库无法比拟的。

(4)面向分析型的 noSQL 技术。

面向分析型应用的 noSQL 技术主要依赖于Hadoop 分布式计算平台,Hadoop 是一个分布式计算平台,以 HDFS 和 Map Reduce 为用户提供系统底层细节透明的分布式基础架构。《Hadoop 经典实践染技巧》传统的数据库厂商 Microsoft,Oracle,SAS,IBM 等纷纷转向 Hadoop 的研究,如微软公司关闭 Dryad 系统,全力投入 Map Reduce 的研发,Oracle 在 2011 年下半年发布 Big Plan 战略计划,全面进军大数据处理领域,IBM 则早已捷足先登“,沃森(Watson)”计算机就是基于 Hadoop 技术开发的产物,同时 IBM 发布了 BigInsights 计划,基于 Hadoop,Netezza 和 SPSS(统计分析、数据挖掘软件)等技术和产品构建大数据分析处理的技术框架。同时也涌现出一批新公司来研究Hadoop 技术,如 Cloudera、MapRKarmashpere 等。

3数据管理方式的展望

通过以上分析,可以看出关系数据库的 ACID 强调数据一致性通常指关联数据之间的逻辑关系是否正确和完整,而对于很多互联网应用来说,对这一致性和隔离性的要求可以降低,而可用性的要求则更为明显,此时就可以采用 noSQL 的两种弱一致性的理论 BASE 和 CAP.关系数据库和 noSQL数据库并不是想到对立的矛盾体,而是可以相互补充的,根据不同需求使用不同的技术,甚至二者可以共同存在,互不影响。最近几年,以 Spanner 为代表新型数据库的出现,给数据库领域注入新鲜血液,这就是融合了一致性和可用性的 newSQL,这种新型思维方式或许会是未来大数据处理方式的发展方向。

4 结束语

随着云计算、物联网等的发展,数据呈现爆炸式的增长,人们正被数据洪流所包围,大数据的时代已经到来。正确利用大数据给人们的生活带来了极大的便利,但与此同时也给传统的数据管理方式带来了极大的挑战。


网页题目:nosql弱一致性,nosql最终一致性
文章源于:http://dzwzjz.com/article/dscogss.html
在线咨询
服务热线
服务热线:028-86922220
TOP