大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
什么是NoSQL数据库?从名称“非SQL”或“非关系型”衍生而来,这些数据库不使用类似SQL的查询语言,通常称为结构化存储。这些数据库自1960年就已经存在,但是直到现在一些大公司(例如Google和Facebook)开始使用它们时,这些数据库才流行起来。该数据库最明显的优势是摆脱了一组固定的列、连接和类似SQL的查询语言的限制。有时,NoSQL这个名称也可能表示“不仅仅SQL”,来确保它们可能支持SQL。 NoSQL数据库使用诸如键值、宽列、图形或文档之类的数据结构,并且可以如JSON之类的不同格式存储。
在网站设计、成都网站制作中从网站色彩、结构布局、栏目设置、关键词群组等细微处着手,突出企业的产品/服务/品牌,帮助企业锁定精准用户,提高在线咨询和转化,使成都网站营销成为有效果、有回报的无锡营销推广。创新互联公司专业成都网站建设十多年了,客户满意度97.8%,欢迎成都创新互联客户联系。
NoSQL 数据库因其功能性、易于开发性和可扩展性而广受认可,它们越来越多地用于大数据和实时 Web 应用程序,在本文中,我们通过示例讨论 NoSQL、何时使用 NoSQL 与 SQL 及其用例。
NoSQL是一种下一代数据库管理系统 (DBMS)。NoSQL 数据库具有灵活的模式,可用于构建具有大量数据和高负载的现代应用程序。
“NoSQL”一词最初是由 Carlo Strozzi 在 1998 年创造的,尽管自 1960 年代后期以来就已经存在类似的数据库。然而,NoSQL 的发展始于 2009 年初,并且发展迅速。
在处理大量数据时,任何关系数据库管理系统 (RDBMS) 的响应时间都会变慢。为了解决这个问题,我们可以通过升级现有硬件来“扩大”信息系统,这非常昂贵。但是,NoSQL 可以更好地横向扩展并且更具成本效益。
NoSQL 对于非结构化或非常大的数据对象(例如聊天日志数据、视频或图像)非常有用,这就是为什么 NoSQL 在微软、谷歌、亚马逊、Meta (Facebook) 等互联网巨头中特别受欢迎的原因。
一些流行的 NoSQL 数据库包括:
随着企业更快地积累更大的数据集,结构化数据和关系模式并不总是适合。有必要使用非结构化数据和大型对象来更好地捕获这些信息。
传统的 RDBMS 使用 SQL(结构化查询语言)语法来存储和检索结构化数据,相反,NoSQL 数据库包含广泛的功能,可以存储和检索结构化、半结构化、非结构化和多态数据。
有时,NoSQL 也被称为“ 不仅仅是 SQL ”,强调它可能支持类似 SQL 的语言或与 SQL 数据库并列。SQL 和 NoSQL DBMS 之间的一个区别是 JOIN 功能。SQL 数据库使用 JOIN 子句来组合来自两个或多个表的行,因为 NoSQL 数据库本质上不是表格的,所以这个功能并不总是可行或相关的。
但是,一些 NoSQL DBMS 可以执行类似于 JOIN的操作——就像 MongoDB 一样。这并不意味着不再需要 SQL DBMS,相反,NoSQL 和 SQL 数据库倾向于以不同的方式解决类似的问题。
一般来说,在以下情况下,NoSQL 比 SQL 更可取:
许多行业都在采用 NoSQL,取代关系数据库,从而为某些业务应用程序提供更高的灵活性和可扩展性,下面给出了 NoSQL 数据库的一些企业用例。
内容管理是一组用于收集、管理、传递、检索和发布任何格式的信息的过程,包括文本、图像、音频和视频。NoSQL 数据库可以通过其灵活和开放的数据模型为存储多媒体内容提供更好的选择。
例如,福布斯在短短几个月内就构建了一个基于 MongoDB 的定制内容管理系统,以更低的成本为他们提供了更大的敏捷性。
大数据是指太大而无法通过传统处理系统处理的数据集,实时存储和检索大数据的系统在分析 历史 数据的同时使用流处理来摄取新数据,这是一系列非常适合 NoSQL 数据库的功能。
Zoom使用 DynamoDB(按需模式)使其数据能够在没有性能问题的情况下进行扩展,即使该服务在 COVID-19 大流行的早期使用量激增。
物联网设备具有连接到互联网或通信网络的嵌入式软件和传感器,能够在无需人工干预的情况下收集和共享数据。随着数十亿台设备生成数不清的数据,IoT NoSQL 数据库为 IoT 服务提供商提供了可扩展性和更灵活的架构。
Freshub就是这样的一项服务,它从 MySQL 切换到 MongoDB,以更好地处理其大型、动态、非统一的数据集。
拥有数十亿智能手机用户,可扩展性正成为在移动设备上提供服务的企业面临的最大挑战。具有更灵活数据模型的 NoSQL DBMS 通常是完美的解决方案。
例如,The Weather Channel使用 MongoDB 数据库每分钟处理数百万个请求,同时还处理用户数据并提供天气更新。
NoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题。
虽然NoSQL流行语火起来才短短一年的时间,但是不可否认,现在已经开始了第二代运动。尽管早期的堆栈代码只能算是一种实验,然而现在的系统已经更加的成熟、稳定。不过现在也面临着一个严酷的事实:技术越来越成熟——以至于原来很好的NoSQL数据存储不得不进行重写,也有少数人认为这就是所谓的2.0版本。这里列出一些比较知名的工具,可以为大数据建立快速、可扩展的存储库。
NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。
对于NoSQL并没有一个明确的范围和定义,但是他们都普遍存在下面一些共同特征:
不需要预定义模式:不需要事先定义数据模式,预定义表结构。数据中的每条记录都可能有不同的属性和格式。当插入数据时,并不需要预先定义它们的模式。
无共享架构:相对于将所有数据存储的存储区域网络中的全共享架构。NoSQL往往将数据划分后存储在各个本地服务器上。因为从本地磁盘读取数据的性能往往好于通过网络传输读取数据的性能,从而提高了系统的性能。
弹性可扩展:可以在系统运行的时候,动态增加或者删除结点。不需要停机维护,数据可以自动迁移。
分区:相对于将数据存放于同一个节点,NoSQL数据库需要将数据进行分区,将记录分散在多个节点上面。并且通常分区的同时还要做复制。这样既提高了并行性能,又能保证没有单点失效的问题。
异步复制:和RAID存储系统不同的是,NoSQL中的复制,往往是基于日志的异步复制。这样,数据就可以尽快地写入一个节点,而不会被网络传输引起迟延。缺点是并不总是能保证一致性,这样的方式在出现故障的时候,可能会丢失少量的数据。
BASE:相对于事务严格的ACID特性,NoSQL数据库保证的是BASE特性。BASE是最终一致性和软事务。
NoSQL数据库并没有一个统一的架构,两种NoSQL数据库之间的不同,甚至远远超过两种关系型数据库的不同。可以说,NoSQL各有所长,成功的NoSQL必然特别适用于某些场合或者某些应用,在这些场合中会远远胜过关系型数据库和其他的NoSQL。
经常会有人问我数据库是干啥的,其实一开始我是拒绝回答的,因为我也不能做到通俗易懂的表达出来,毕竟我接触这个概念也没有多长时间,但随着问的人多了,我觉得是时候脑补一下我的第一堂课了,万一哪天冒出来个货跟你掰扯这事儿,你没分分钟给他说清,最后弄个丢里儿丢面儿,好尴尬呀。
数据库,说白了就是按照数据结构来组织、存储和管理数据的仓库,这些数据是结构化的,并可为多种应用服务。
也就是说,数据库是使用计算机服务器来存储数据的,专门用来提供各种数据服务。
可以这样想像,过去一个公司的所有财务数据都是放在保险柜里面,而现在我们就可以针对这些财务数据搭建一个数据库放在某台计算机或服务器上面;再比如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。
有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。
这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。
此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。
最常见的数据库有:银行储蓄系统、手机话费系统、美容美发会员系统、超市会员积分系统、水电费系统、机票或火车票系统等,这些都需要后台数据库基础设施的支撑。
举了这么多例子,应该是把数据库说明白了,至少能在大脑里面有个概念,知道这个东西是干啥的。
现在大数据被炒的红得发紫,而大数据的基础也是数据,由此可见,数据是一个企业的核心资源,说它是企业的立身之本、发展之基都不为过,因此,维护数据库的数据库管理员(DBA)是企业不可或缺的。
目前市面上的数据库产品有很多,单从规模上分可分为大型、中型、小型几种,典型的数据库产品如下:大型数据库:Oracle、DB2、Sybase;中型数据库:MySQL、SQLServer、Infomix;小型数据库:Access、VisualFoxpro。
在众多的数据库产品中,Oracle数据库一直处于行业领导先地位,也是当今最流行的关系型数据库。
Oracle可翻译成"甲骨文",它是一家以数据库为主业的全球化公司,是全球第二大软件公司(第一名是微软公司),目前Oracle在数据库软件市场已经排名第一,数据库软件市场份额达到48.6%,遥遥领先于第二名占有率仅为20.7%的IBM公司的DB2。
在中国市场上的计算机专业系统后台所使用的数据库尤以Oracle数据库居多。
但是购买Oracle数据库需要很大一笔费用,一般的大型企业使用,需要有专业人员进行管理和维护,中小企业承担不起。
中小企业为了节省成本,一般使用MySQL、PostgreSQL这类免费开源的数据库,所以Oracle数据库相关的工作岗位一般是在大型企业中。
对于为什么选择Oracle数据库,而不是其他的数据库?第一,是因为Oracle数据库占据最大的市场份额,并且越来越大,市场需要很多Oracle数据库方面的人才,中国有句老话说"做对事,选对人",是同样的道理;第二,是很多非Oracle数据库的老系统正往Oracle数据库迁移,其他数据库市场占有率在减少,其他数据库工作者有面临失业的风险;第三,Oracle有大量的官方学习文档,还有部分中文文档,可以有效地进行学习;第四,Oracle有大量的从业人员,有共同方向的朋友可以互相帮助,不再是孤胆英雄;第五,是可以很容易地从Oracle官方网站下载功能齐全的数据库最新版本进行学习,可以让你了解数据库方面的最新发展趋势等。
在此说明,以后的所有内容都是基于Oracle11g数据库产品的,下面我们就简单介绍一下Oracle11g的系列产品:企业版(EnterpriseEdition)此版本包含了数据库的所有组件,并且能够通过购买选项和程序包来进一步对其增强。
能支持例如大业务量的在线事务处理OLTP(On-LineTransactionProcessing联机事务处理系统)环境、查询密集的数据仓库和要求苛刻的互联网应用程序。
标准版1(StandardEditionOne)此版本为工作组、部门级和互联网、内联网应用程序提供了前所未有的易用性和性价比。
从针对小型商务的单服务器环境到大型的分布式部门环境,该版本包含了构建重要商务应用程序所必需的全部工具。
它仅许可在最高容量为2个处理器的服务器上使用,支持Windows/Linux/UNIX操作系统,并支持64位平台操作系统。
标准版(StandardEdition)此版本提供了StandardEditionOne所不具有的易用性、能力和性能,并且利用真正的应用集群(RAC)提供了对更大型计算机和服务集群的支持。
它可以在最高容量为4个处理器的单台服务器上、或者在一个支持最多4个处理器的集群上使用,可支持Windows、Linux和UNIX操作系统,并支持64位平台操作系统。
简化版此版本支持与标准版1、标准版和企业版完全兼容的单用户开发和部署。
通过将Oracle数据库获奖的功能引入到个人工作站中,该版本提供了结合世界上最流行的数据库功能的数据库,并且该数据库具有桌面产品通常具有的易用性和简单性,可支持Linux和Windows操作系统。
从存储结构上来说,目前流行的数据库主要包含以下两种:RDBMS:关系型数据库,是指采用了关系模型来组织数据的数据库;NoSQL数据库,是指那些非关系型的、分布式的数据库。
简单来说,关系模型指的就是二维表格模型,而一个关系型数据库就是由二维表及其之间的联系所组成的一个数据组织。
关系型数据库优点:1、容易理解二维表结构是非常贴近逻辑世界的一个概念,关系模型相对网状、层次等其他模型来说更容易理解。
2、使用方便通用的SQL语言使得操作关系型数据库非常方便。
3、易于维护丰富的完整性大大减低了数据冗余和数据部移植的概率。
4、事务安全所有关系型数据库都不同程度的遵守事物的四个基本属性,因此对于银行、电信、证券等交易型业务是不可或缺的。
关系型数据库的瓶颈:1、高并发读写需求网站的用户并发性非常高,往往达到每秒上万次读写请求,对于传统型数据库来说,硬盘I/O是一个很大的瓶颈。
2、海量数据的高效率读写互联网上每天产生的数据量是巨大的,对于关系型数据库来说,在一张包含海量数据的表中查询,效率是非常低的。
3、高扩展性和可用性在基于WEB的结构中,数据库是最难进行横向扩展的,当一个应用系统的用户量和访问量与日俱增的时候,数据库却没有办法像WEBServer和APPLICATIONServer那样简单的通过添加更多的硬件和服务节点来扩展性能和负载能力。
对于很多需要提供24小时不间断服务的网站来说,对数据库系统进行升级和扩展是非常痛苦的事情,往往需要停机维护和数据迁移。
NoSQL数据库NoSQL一词首先是CarloStrozzi在1998年提出的。
2009年再次提出了NoSQL一词,用于指那些非关系型的、分布式的,且一般不保证遵循ACID原则的数据存储系统。
NoSQL具有以下特点:1、可以弥补关系型数据库的不足2、针对某些特定的需求而设计,可以具有极高的性能3、大部分都是开源的,由于成熟度不够,存在潜在的稳定性和维护性问题。
关系型数据库适用于结构化数据,而非关系型数据库适用于非结构化数据,二者优势互补,相得益彰。
Oracle数据库未来的发展方向是提供结构化、非结构化、半结构化的解决方案,实现关系型数据库和NoSQL共存互补。
值得强调的是,目前关系型数据库仍是主流数据库。
虽然NoSQL数据库打破了关系型数据库存储的观念,可以很好地满足WEB2.0时代数据的存储要求,但NoSQL数据库也有自己的缺陷。
在现阶段的情况下,可以将关系型数据库和NoSQL数据库结合使用,相互弥补各自的不足。
关于数据库及其代表产品Oracle今天就介绍这么多,有兴趣的可以继续深挖,希望我的介绍能让你对数据库有一个更深入的认识。
如果有志于在这方面发展的话,就让我们一起跟往事干杯从头再来。
数据库可以按照内容类型分类:书目、全文、数字和图像。在计算中,数据库有时根据其组织方法进行分类。有许多不同类型的数据库,从最流行的方法关系数据库到分布式数据库、云数据库或NoSQL数据库。
常用数据库:
1、关系型数据库
关系型数据库是由IBM的E.F. Codd于1970年发明的,它是一个表格数据库,其中定义了数据,因此可以以多种不同的方式对其进行重组和访问。
关系数据库由一组表组成,其中的数据属于预定义的类别。每个表在一个列中至少有一个数据类别,并且每一行对于列中定义的类别都有一个特定的数据实例。
结构化查询语言(SQL)是关系数据库的标准用户和应用程序接口。关系数据库易于扩展,并且可以在原始数据库创建之后添加新的数据类别,而不需要修改所有现有应用程序。
2、分布式数据库
分布式数据库是一种数据库,其中部分数据库存储在多个物理位置,处理在网络中的不同点之间分散或复制。
分布式数据库可以是同构的,也可以是异构的。同构分布式数据库系统中的所有物理位置都具有相同的底层硬件,并运行相同的操作系统和数据库应用程序。异构分布式数据库中的硬件、操作系统或数据库应用程序在每个位置上可能是不同的。
3、云数据库
云数据库是针对虚拟化环境(混合云、公共云或私有云)优化或构建的数据库。云数据库提供了一些好处,比如可以按每次使用支付存储容量和带宽的费用,还可以根据需要提供可伸缩性和高可用性。
云数据库还为企业提供了在软件即服务部署中支持业务应用程序的机会。
4、NoSQL数据库
NoSQL数据库对于大型分布式数据集非常有用。
NoSQL数据库对于关系数据库无法解决的大数据性能问题非常有效。当组织必须分析大量非结构化数据或存储在云中多个虚拟服务器上的数据时,它们是最有效的。
5、面向对象的数据库
使用面向对象编程语言创建的项通常存储在关系数据库中,但是面向对象数据库非常适合于这些项。
面向对象的数据库是围绕对象(而不是操作)和数据(而不是逻辑)组织的。例如,关系数据库中的多媒体记录可以是可定义的数据对象,而不是字母数字值。
6、图形数据库
面向图形的数据库是一种NoSQL数据库,它使用图形理论存储、映射和查询关系。图数据库基本上是节点和边的集合,其中每个节点表示一个实体,每个边表示节点之间的连接。
图形数据库在分析互连方面越来越受欢迎。例如,公司可以使用图形数据库从社交媒体中挖掘关于客户的数据。
树苗中2包是需要混合浸泡吗?一个大型、稳健、成熟的分布式系统的背后,往往会涉及众多的支撑系统,我们将这些支撑系统称为分布式系统的基础设施。除了前面所介绍的分布式协作及配置管理系统ZooKeeper,我们进行系统架构设计所依赖的基础设施,还包括分布式缓存系统、持久化存储、分布式消息系统、搜索引擎,以及CDN系统、负载均衡系统、运维自动化系统等,还有后面章节所要介绍的实时计算系统、离线计算系统、分布式文件系统、日志收集系统、监控系统、数据仓库等。
分布式缓存主要用于在高并发环境下,减轻数据库的压力,提高系统的响应速度和并发吞吐。当大量的读、写请求涌向数据库时,磁盘的处理速度与内存显然不在一个量级,因此,在数据库之前加一层缓存,能够显著提高系统的响应速度,并降低数据库的压力。作为传统的关系型数据库,MySQL提供完整的ACID操作,支持丰富的数据类型、强大的关联查询、where语句等,能够非常客易地建立查询索引,执行复杂的内连接、外连接、求和、排序、分组等操作,并且支持存储过程、函数等功能,产品成熟度高,功能强大。但是,对于需要应对高并发访问并且存储海量数据的场景来说,出于对性能的考虑,不得不放弃很多传统关系型数据库原本强大的功能,牺牲了系统的易用性,并且使得系统的设计和管理变得更为复杂。这也使得在过去几年中,流行着另一种新的存储解决方案——NoSQL,它与传统的关系型数据库最大的差别在于,它不使用SQL作为查询语言来查找数据,而采用key-value形式进行查找,提供了更高的查询效率及吞吐,并且能够更加方便地进行扩展,存储海量数据,在数千个节点上进行分区,自动进行数据的复制和备份。在分布式系统中,消息作为应用间通信的一种方式,得到了十分广泛的应用。消息可以被保存在队列中,直到被接收者取出,由于消息发送者不需要同步等待消息接收者的响应,消息的异步接收降低了系统集成的耦合度,提升了分布式系统协作的效率,使得系统能够更快地响应用户,提供更高的吞吐。
当系统处于峰值压力时,分布式消息队列还能够作为缓冲,削峰填谷,缓解集群的压力,避免整个系统被压垮。垂直化的搜索引擎在分布式系统中是一个非常重要的角色,它既能够满足用户对于全文检索、模糊匹配的需求,解决数据库like查询效率低下的问题,又能够解决分布式环境下,由于采用分库分表,或者使用NoSQL数据库,导致无法进行多表关联或者进行复杂查询的问题。