大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
通常数据库分为关系型数据库和非关系型数据库,关系型数据库的优势到现在也是无可替代的,比如MySQL、SQL Server、Oracle、DB2、SyBase、Informix、PostgreSQL以及比较小型的Access等等数据库,这些数据库支持复杂的SQL操作和事务机制,适合小量数据读写场景;但是到了大数据时代,人们更多的数据和物联网加入的数据已经超出了关系数据库的承载范围。
永康网站制作公司哪家好,找成都创新互联!从网页设计、网站建设、微信开发、APP开发、响应式网站设计等网站项目制作,到程序开发,运营维护。成都创新互联从2013年成立到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选成都创新互联。
大数据时代初期,随着数据请求并发量大不断增大,一般都是采用的集群同步数据的方式处理,就是将数据库分成了很多的小库,每个数据库的数据内容是不变的,都是保存了源数据库的数据副本,通过同步或者异步方式保证数据的一致性,每个库设定特定的读写方式,比如主数据库负责写操作,从数据库是负责读操作,等等根据业务复杂程度以此类推,将业务在物理层面上进行了分离,但是这种方式依旧存在一定的负载压力的问题,企业数据在不断的扩增中,后面就采用分库分表的方式解决,对读写负载进行分离,但是这种实现依旧存在不足,且需要不断进行数据库服务器扩容。
NoSQL数据库大致分为5种类型
1、列族数据库:BigTable、HBase、Cassandra、Amazon SimpleDB、HadoopDB等,下面简单介绍几个
(1)Cassandra:Cassandra是一个列存储数据库,支持跨数据中心的数据复制。它的数据模型提供列索引,log-structured修改,支持反规范化,实体化视图和嵌入超高速缓存。
(2)HBase:Apache Hbase源于Google的Bigtable,是一个开源、分布式、面向列存储的模型。在Hadoop和HDFS之上提供了像Bigtable一样的功能。
(3)Amazon SimpleDB:Amazon SimpleDB是一个非关系型数据存储,它卸下数据库管理的工作。开发者使用Web服务请求存储和查询数据项
(4)Apache Accumulo:Apache Accumulo的有序的、分布式键值数据存储,基于Google的BigTable设计,建立在Apache Hadoop、Zookeeper和Thrift技术之上。
(5)Hypertable:Hypertable是一个开源、可扩展的数据库,模仿Bigtable,支持分片。
(6)Azure Tables:Windows Azure Table Storage Service为要求大量非结构化数据存储的应用提供NoSQL性能。表能够自动扩展到TB级别,能通过REST和Managed API访问。
2、键值数据库:Redis、SimpleDB、Scalaris、Memcached等,下面简单介绍几个
(1)Riak:Riak是一个开源,分布式键值数据库,支持数据复制和容错。(2)Redis:Redis是一个开源的键值存储。支持主从式复制、事务,Pub/Sub、Lua脚本,还支持给Key添加时限。
(3)Dynamo:Dynamo是一个键值分布式数据存储。它直接由亚马逊Dynamo数据库实现;在亚马逊S3产品中使用。
(4)Oracle NoSQL Database:来自Oracle的键值NoSQL数据库。它支持事务ACID(原子性、一致性、持久性和独立性)和JSON。
(5)Oracle NoSQL Database:具备数据备份和分布式键值存储系统。
(6)Voldemort:具备数据备份和分布式键值存储系统。
(7)Aerospike:Aerospike数据库是一个键值存储,支持混合内存架构,通过强一致性和可调一致性保证数据的完整性。
3、文档数据库:MongoDB、CouchDB、Perservere、Terrastore、RavenDB等,下面简单介绍几个
(1)MongoDB:开源、面向文档,也是当下最人气的NoSQL数据库。
(2)CounchDB:Apache CounchDB是一个使用JSON的文档数据库,使用Javascript做MapReduce查询,以及一个使用HTTP的API。
(3)Couchbase:NoSQL文档数据库基于JSON模型。
(4)RavenDB:RavenDB是一个基于.NET语言的面向文档数据库。
(5)MarkLogic:MarkLogic NoSQL数据库用来存储基于XML和以文档为中心的信息,支持灵活的模式。
4、图数据库:Neo4J、InfoGrid、OrientDB、GraphDB,下面简单介绍几个
(1)Neo4j:Neo4j是一个图数据库;支持ACID事务(原子性、独立性、持久性和一致性)。
(2)InfiniteGraph:一个图数据库用来维持和遍历对象间的关系,支持分布式数据存储。
(3)AllegroGraph:AllegroGraph是结合使用了内存和磁盘,提供了高可扩展性,支持SPARQ、RDFS++和Prolog推理。
5、内存数据网格:Hazelcast、Oracle Coherence、Terracotta BigMemorry、GemFire、Infinispan、GridGain、GigaSpaces,下面简单介绍几个
(1)Hazelcast:Hazelcast CE是一个开源数据分布平台,它允许开发者在数据库集群之上共享和分割数据。
(2)Oracle Coherence:Oracle的内存数据网格解决方案提供了常用数据的快速访问能力,一致性支持事务处理能力和数据的动态划分。
(3)Terracotta BigMemory:来自Terracotta的分布式内存管理解决方案。这项产品包括一个Ehcache界面、Terracotta管理控制台和BigMemory-Hadoop连接器。
(4)GemFire:Vmware vFabric GemFire是一个分布式数据管理平台,也是一个分布式的数据网格平台,支持内存数据管理、复制、划分、数据识别路由和连续查询。
(5)Infinispan:Infinispan是一个基于Java的开源键值NoSQL数据存储,和分布式数据节点平台,支持事务,peer-to-peer 及client/server 架构。
(6)GridGain:分布式、面向对象、基于内存、SQL+NoSQL键值数据库。支持ACID事务。
(7)GigaSpaces:GigaSpaces内存数据网格能够充当应用的记录系统,并支持各种各样的高速缓存场景。
特点:
它们可以处理超大量的数据。
它们运行在便宜的PC服务器集群上。
PC集群扩充起来非常方便并且成本很低,避免了“sharding”操作的复杂性和成本。
它们击碎了性能瓶颈。
NoSQL的支持者称,通过NoSQL架构可以省去将Web或Java应用和数据转换成SQL友好格式的时间,执行速度变得更快。
“SQL并非适用于所有的程序代码,” 对于那些繁重的重复操作的数据,SQL值得花钱。但是当数据库结构非常简单时,SQL可能没有太大用处。
没有过多的操作。
虽然NoSQL的支持者也承认关系数据库提供了无可比拟的功能集合,而且在数据完整性上也发挥绝对稳定,他们同时也表示,企业的具体需求可能没有那么多。
Bootstrap支持
因为NoSQL项目都是开源的,因此它们缺乏供应商提供的正式支持。这一点它们与大多数开源项目一样,不得不从社区中寻求支持。
优点:
易扩展
NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。
大数据量,高性能
NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一种大粒度的Cache,在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的 Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了。
灵活的数据模型
NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦。这点在大数据量的web2.0时代尤其明显。
高可用
NoSQL在不太影响性能的情况,就可以方便的实现高可用的架构。比如Cassandra,HBase模型,通过复制模型也能实现高可用。
主要应用:
Apache HBase
这个大数据管理平台建立在谷歌强大的BigTable管理引擎基础上。作为具有开源、Java编码、分布式多个优势的数据库,Hbase最初被设计应用于Hadoop平台,而这一强大的数据管理工具,也被Facebook采用,用于管理消息平台的庞大数据。
Apache Storm
用于处理高速、大型数据流的分布式实时计算系统。Storm为Apache Hadoop添加了可靠的实时数据处理功能,同时还增加了低延迟的仪表板、安全警报,改进了原有的操作方式,帮助企业更有效率地捕获商业机会、发展新业务。
Apache Spark
该技术采用内存计算,从多迭代批量处理出发,允许将数据载入内存做反复查询,此外还融合数据仓库、流处理和图计算等多种计算范式,Spark用Scala语言实现,构建在HDFS上,能与Hadoop很好的结合,而且运行速度比MapReduce快100倍。
Apache Hadoop
该技术迅速成为了大数据管理标准之一。当它被用来管理大型数据集时,对于复杂的分布式应用,Hadoop体现出了非常好的性能,平台的灵活性使它可以运行在商用硬件系统,它还可以轻松地集成结构化、半结构化和甚至非结构化数据集。
Apache Drill
你有多大的数据集?其实无论你有多大的数据集,Drill都能轻松应对。通过支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平台,允许大规模数据吞吐,而且能很快得出结果。
Apache Sqoop
也许你的数据现在还被锁定于旧系统中,Sqoop可以帮你解决这个问题。这一平台采用并发连接,可以将数据从关系数据库系统方便地转移到Hadoop中,可以自定义数据类型以及元数据传播的映射。事实上,你还可以将数据(如新的数据)导入到HDFS、Hive和Hbase中。
Apache Giraph
这是功能强大的图形处理平台,具有很好可扩展性和可用性。该技术已经被Facebook采用,Giraph可以运行在Hadoop环境中,可以将它直接部署到现有的Hadoop系统中。通过这种方式,你可以得到强大的分布式作图能力,同时还能利用上现有的大数据处理引擎。
Cloudera Impala
Impala模型也可以部署在你现有的Hadoop群集上,监视所有的查询。该技术和MapReduce一样,具有强大的批处理能力,而且Impala对于实时的SQL查询也有很好的效果,通过高效的SQL查询,你可以很快的了解到大数据平台上的数据。
Gephi
它可以用来对信息进行关联和量化处理,通过为数据创建功能强大的可视化效果,你可以从数据中得到不一样的洞察力。Gephi已经支持多个图表类型,而且可以在具有上百万个节点的大型网络上运行。Gephi具有活跃的用户社区,Gephi还提供了大量的插件,可以和现有系统完美的集成到一起,它还可以对复杂的IT连接、分布式系统中各个节点、数据流等信息进行可视化分析。
MongoDB
这个坚实的平台一直被很多组织推崇,它在大数据管理上有极好的性能。MongoDB最初是由DoubleClick公司的员工创建,现在该技术已经被广泛的应用于大数据管理。MongoDB是一个应用开源技术开发的NoSQL数据库,可以用于在JSON这样的平台上存储和处理数据。目前,纽约时报、Craigslist以及众多企业都采用了MongoDB,帮助他们管理大型数据集。(Couchbase服务器也作为一个参考)。
十大顶尖公司:
Amazon Web Services
Forrester将AWS称为“云霸主”,谈到云计算领域的大数据,那就不得不提到亚马逊。该公司的Hadoop产品被称为EMR(Elastic Map Reduce),AWS解释这款产品采用了Hadoop技术来提供大数据管理服务,但它不是纯开源Hadoop,经过修改后现在被专门用在AWS云上。
Forrester称EMR有很好的市场前景。很多公司基于EMR为客户提供服务,有一些公司将EMR应用于数据查询、建模、集成和管理。而且AWS还在创新,Forrester称未来EMR可以基于工作量的需要自动缩放调整大小。亚马逊计划为其产品和服务提供更强大的EMR支持,包括它的RedShift数据仓库、新公布的Kenesis实时处理引擎以及计划中的NoSQL数据库和商业智能工具。不过AWS还没有自己的Hadoop发行版。
Cloudera
Cloudera有开源Hadoop的发行版,这个发行版采用了Apache Hadoop开源项目的很多技术,不过基于这些技术的发行版也有很大的进步。Cloudera为它的Hadoop发行版开发了很多功能,包括Cloudera管理器,用于管理和监控,以及名为Impala的SQL引擎等。Cloudera的Hadoop发行版基于开源Hadoop,但也不是纯开源的产品。当Cloudera的客户需要Hadoop不具备的某些功能时,Cloudera的工程师们就会实现这些功能,或者找一个拥有这项技术的合作伙伴。Forrester表示:“Cloudera的创新方法忠于核心Hadoop,但因为其可实现快速创新并积极满足客户需求,这一点使它不同于其他那些供应商。”目前,Cloudera的平台已经拥有200多个付费客户,一些客户在Cloudera的技术支持下已经可以跨1000多个节点实现对PB级数据的有效管理。
Hortonworks
和Cloudera一样,Hortonworks是一个纯粹的Hadoop技术公司。与Cloudera不同的是,Hortonworks坚信开源Hadoop比任何其他供应商的Hadoop发行版都要强大。Hortonworks的目标是建立Hadoop生态圈和Hadoop用户社区,推进开源项目的发展。Hortonworks平台和开源Hadoop联系紧密,公司管理人员表示这会给用户带来好处,因为它可以防止被供应商套牢(如果Hortonworks的客户想要离开这个平台,他们可以轻松转向其他开源平台)。这并不是说Hortonworks完全依赖开源Hadoop技术,而是因为该公司将其所有开发的成果回报给了开源社区,比如Ambari,这个工具就是由Hortonworks开发而成,用来填充集群管理项目漏洞。Hortonworks的方案已经得到了Teradata、Microsoft、Red Hat和SAP这些供应商的支持。
IBM
当企业考虑一些大的IT项目时,很多人首先会想到IBM。IBM是Hadoop项目的主要参与者之一,Forrester称IBM已有100多个Hadoop部署,它的很多客户都有PB级的数据。IBM在网格计算、全球数据中心和企业大数据项目实施等众多领域有着丰富的经验。“IBM计划继续整合SPSS分析、高性能计算、BI工具、数据管理和建模、应对高性能计算的工作负载管理等众多技术。”
Intel
和AWS类似,英特尔不断改进和优化Hadoop使其运行在自己的硬件上,具体来说,就是让Hadoop运行在其至强芯片上,帮助用户打破Hadoop系统的一些限制,使软件和硬件结合的更好,英特尔的Hadoop发行版在上述方面做得比较好。Forrester指出英特尔在最近才推出这个产品,所以公司在未来还有很多改进的可能,英特尔和微软都被认为是Hadoop市场上的潜力股。
MapR Technologies
MapR的Hadoop发行版目前为止也许是最好的了,不过很多人可能都没有听说过。Forrester对Hadoop用户的调查显示,MapR的评级最高,其发行版在架构和数据处理能力上都获得了最高分。MapR已将一套特殊功能融入其Hadoop发行版中。例如网络文件系统(NFS)、灾难恢复以及高可用性功能。Forrester说MapR在Hadoop市场上没有Cloudera和Hortonworks那样的知名度,MapR要成为一个真正的大企业,还需要加强伙伴关系和市场营销。
答案:A
1.文档型数据库
作为最受欢迎的NoSQL产品,文档型数据库MongoDB当仁不让地占据了第一的位置,同时它也是所有NoSQL数据库中排名最靠前的产品(总排行榜第七名)。Apache基金会的CouchDB排在第二,基于.Net的数据库RavenDB排在第三,Couchbase排在第四。
2.键值(Key-value)数据库
键值(Key-value)数据库是NoSQL领域中应用范围最广的,也是涉及产品最多的一种模型。从最简单的BerkeleyDB到功能丰富的分布式数据库Riak再到Amazon托管的DynamoDB不一而足。
在键值数据库流行度排行中,Redis不出意外地排名第一,它是一款由Vmware支持的内存数据库,总体排名第十一。排在第二位的是Memcached,它在缓存系统中应用十分广泛。排在之后的是Riak、BerkeleyDB、SimpleDB、DynamoDB以及甲骨文的Oracle NoSQL数据库。值得注意的是,Oracle NoSQL数据库上榜不久,得分已经翻番,上升势头非常迅猛。
3. 列式存储
列式存储被视为NoSQL数据库中非常重要的一种模式,其中Cassandra流行度最高,它已经由Facebook转交给到Apache进行管理,同时Cassandra在全体数据库排名中排在第十位,紧随MongoDB成为第二受欢迎的NoSQL数据库。基于Hadoop的Hbase排在第二位,Hypertable排在第三。而Google的BigTable并未列入排名,原因是它并未正式公开。
NoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在处理web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,出现了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。
常见的Nosql数据库有:
一、Redis数据库
Redis(RemoteDictionaryServer),即远程字典服务,是一个开源的使用ANSIC语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。从2010年3月15日起,Redis的开发工作由VMware主持。从2013年5月开始,Redis的开发由Pivotal赞助。
二、MongoDB数据库
MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。
Mongo最大的特点是它支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。
扩展资料:
对于NoSQL并没有一个明确的范围和定义,但是他们都普遍存在下面一些共同特征:
一、易扩展
NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。无形之间,在架构的层面上带来了可扩展的能力。
二、大数据量,高性能
NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用Query Cache。NoSQL的Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说性能就要高很多。
三、灵活的数据模型
NoSQL无须事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是——个噩梦。这点在大数据量的Web2.0时代尤其明显。
四、高可用
NoSQL在不太影响性能的情况,就可以方便地实现高可用的架构。比如Cassandra、HBase模型,通过复制模型也能实现高可用。
参考资料来源:百度百科-NoSQL