大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
同问 SQL有什么方法可以快速把列名和数据一一对上? 比如:下面图片的把第一行的第一列全业务对应下一行的3500.0元,都是把第二行的数据插入到第一行的第二列上
成都做网站、网站设计的关注点不是能为您做些什么网站,而是怎么做网站,有没有做好网站,给创新互联公司一个展示的机会来证明自己,这并不会花费您太多时间,或许会给您带来新的灵感和惊喜。面向用户友好,注重用户体验,一切以用户为中心。
一、大数据采集
大数据采集,即对各种来源的结构化和非结构化海量数据,所进行的采集。
数据库采集:流行的有Sqoop和ETL,传统的关系型数据库MySQL和Oracle 也依然充当着许多企业的数据存储方式。当然了,目前对于开源的Kettle和Talend本身,也集成了大数据集成内容,可实现hdfs,hbase和主流Nosq数据库之间的数据同步和集成。
网络数据采集:一种借助网络爬虫或网站公开API,从网页获取非结构化或半结构化数据,并将其统一结构化为本地数据的数据采集方式。
文件采集:包括实时文件采集和处理技术flume、基于ELK的日志采集和增量采集等等。
二、大数据预处理
大数据预处理,指的是在进行数据分析之前,先对采集到的原始数据所进行的诸如“清洗、填补、平滑、合并、规格化、一致性检验”等一系列操作,旨在提高数据质量,为后期分析工作奠定基础。数据预处理主要包括四个部分:数据清理、数据集成、数据转换、数据规约。
三、大数据储存
大数据每年都在激增庞大的信息量,加上已有的历史数据信息,对整个业界的数据存储、处理带来了很大的机遇与挑战.为了满足快速增长的存储需求,云存储需要具备高扩展性、高可靠性、高可用性、低成本、自动容错和去中心化等特点.常见的云存储形式可以分为分布式文件系统和分布式数据库。其中,分布式文件系统采用大规模的分布式存储节点来满足存储大量文件的需求,而分布式的NoSQL数据库则为大规模非结构化数据的处理和分析提供支持。
四、大数据清洗
MapReduce作为Hadoop的查询引擎,用于大规模数据集的并行计算,”Map(映射)”和”Reduce(归约)”,是它的主要思想。它极大的方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统中。随着业务数据量的增多,需要进行训练和清洗的数据会变得越来越复杂,这个时候就需要任务调度系统,比如oozie或者azkaban,对关键任务进行调度和监控。
关于大数据工程师需要学哪些技术,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
恩,这个怎么说呢
sql语句总结一下,无非就几种,关联查询,子查询,各种函数的使用
根据要做的需求,先分析一下,需要用到哪些查询
比如要用到关联查询
就先把要用到的表列出来,比如a,b,c三个表
就先写出来
select from a,b,c
前边查询的内容可以先放着不用写
然后找三个表关联关系,当然也要看是自然连接还是左连接什么的,这里就给你举例正常连接吧
select from a,b,c where a.id=b.aid and b.id=c.bid
关联关系写好了,就可以在写查询的内容了
select a.name,b.name,sum(c.value) from a,b,c where a.id=b.aid and b.id=c.bid
然后,你再看,因为有聚合查询,后边要group by
select a.name,b.name,sum(c.value) from a,b,c where a.id=b.aid and b.id=c.bid group by a.name,b.name
其他的,再有什么排序啊,等等啊,就好写了,这里就不往下写了
子查询更简单写,主要就是要判断好,要先写子查询,然后往外来套,比如
select * from b where id in (select id from a)
这个,你就要先写括号里的那个,然后写外边的
至于函数的使用,这个没什么经验,就是可能有时会出现类型转换等等的问题,你就要牢记每个函数的作用,不懂再问吧
创建有效的大数据模型的6个技巧
数据建模是一门复杂的科学,涉及组织企业的数据以适应业务流程的需求。它需要设计逻辑关系,以便数据可以相互关联,并支持业务。然后将逻辑设计转换成物理模型,该物理模型由存储数据的存储设备、数据库和文件组成。
历史上,企业已经使用像SQL这样的关系数据库技术来开发数据模型,因为它非常适合将数据集密钥和数据类型灵活地链接在一起,以支持业务流程的信息需求。
不幸的是,大数据现在包含了很大比例的管理数据,并不能在关系数据库上运行。它运行在像NoSQL这样的非关系数据库上。这导致人们认为可能不需要大数据模型。
问题是,企业确实需要对大数据进行数据建模。
以下是大数据建模的六个提示:
1.不要试图将传统的建模技术强加于大数据
传统的固定记录数据在其增长中稳定且可预测的,这使得建模相对容易。相比之下,大数据的指数增长是不可预测的,其无数形式和来源也是如此。当网站考虑建模大数据时,建模工作应该集中在构建开放和弹性数据接口上,因为人们永远不知道何时会出现新的数据源或数据形式。这在传统的固定记录数据世界中并不是一个优先事项。
2.设计一个系统,而不是一个模式
在传统的数据领域中,关系数据库模式可以涵盖业务对其信息支持所需的数据之间的大多数关系和链接。大数据并非如此,它可能没有数据库,或者可能使用像NoSQL这样的数据库,它不需要数据库模式。
正因为如此,大数据模型应该建立在系统上,而不是数据库上。大数据模型应包含的系统组件包括业务信息需求、企业治理和安全、用于数据的物理存储、所有类型数据的集成、开放接口,以及处理各种不同数据类型的能力。
3.寻找大数据建模工具
有商业数据建模工具可以支持Hadoop以及像Tableau这样的大数据报告软件。在考虑大数据工具和方法时,IT决策者应该包括为大数据构建数据模型的能力,这是要求之一。
4.关注对企业的业务至关重要的数据
企业每天都会输入大量的数据,而这些大数据大部分是无关紧要的。创建包含所有数据的模型是没有意义的。更好的方法是确定对企业来说至关重要的大数据,并对这些数据进行建模。
5.提供高质量的数据
如果组织专注于开发数据的正确定义和完整的元数据来描述数据来自何处、其目的是什么等等,那么可以对大数据模型产生更好的数据模型和关系。可以更好地支持支持业务的数据模型。
6.寻找数据的关键切入点
当今最常用的大数据载体之一就是地理位置,这取决于企业的业务和行业,还
有其他用户需要的大数据常用密钥。企业越能够识别数据中的这些常用入口点,就越能够设计出支持企业关键信息访问路径的数据模型。
程序员(英文Programmer)是从事程序开发、维护的专业人员。一般我们将程序员分为程序设计人员和程序编码员,但两者的界限并不非常清楚,特别是在中国。
作一个真正合格的程序员,应该具有的素质。
1:团队精神和协作能力
团队精神和协作能力是作为一个程序员应具备的最基本的素质。软件工程已经提了将近三十年了,当今的软件开发已经不是编程了,而是工程。独行侠可以写一些程序也能赚钱发财,但是进入研发团队,从事商业化和产品化的开发任务,就必须具备这种素质。可以毫不夸张的说这种素质是一个程序员乃至一个团队的安身立命之本。
2:文档习惯
文档是一个软件系统的生命力。一个公司的产品再好、技术含量再高,如果没有缺乏文档,知识就没有继承,公司还是一个来料加工的软件作坊。作为代码程序员,必须将30%的工作时间写用于技术文档。没有文档的程序员势必会被淘汰。
3:规范化的代码编写习惯
知名软件公司的代码的变量命名、注释格式,甚至嵌套中行缩进的长度和函数间的空行数字都有明确规定,良好的编写习惯,不但有助于代码的移植和纠错,也有助于不同技术人员之间的协作。 一些所谓的高手甚至叫嚣高手写的代码一般人看不懂,我只能说他不是一名合格的程序员。
4:需求理解能力
程序员要能正确理解任务单中描述的需求。在这里要明确一点,程序员不仅仅要注意到软件的功能需求,还应注意软件的性能需求,要能正确评估自己的模块对整个项目中的影响及潜在的威胁,如果有着两到三年项目经验的熟练程序员对这一点没有体会的话,只能说明他或许是认真工作过,但是没有用心工作。
5:模块化思维能力
作为一个优秀的程序员,他的思想不能在局限当前的工作任务里面,要想想看自己写的模块是否可以脱离当前系统存在,通过简单的封装在其他系统中或其他模块中直接使用。这样做可以使代码能重复利用,减少重复的劳动,也能是系统结构越趋合理。模块化思维能力的提高是一个程序员的技术水平提高的一项重要指标。
6:测试习惯
测试是软件工程质量保证的重要环节,但是测试不仅仅是测试工程师的工作,而是每个程序员的一种基本职责。程序员要认识测试不仅是正常的程序调试,而要是要进行有目的有针对性的异常调用测试,这一点要结合需求理解能力。
7:学习和总结的能力
程序员是很容易被淘汰的职业,所以要善于学习总结。许多程序员喜欢盲目追求一些编码的小技巧,这样的技术人员无论学了多少语言,代码写起来多熟练,我们只能说他是一名熟练的代码民工,他永远都不会有质的提高。一个善于学习的程序员会经常总结自己的技术水平,对自己的技术层面要有良好的定位,这样才能有目的地提高自己。这样才能逐步提高,从程序员升级为软件设计师、系统分析员。
作为高级程序员,除了应该具备上述全部素质之外,还需要具备以下素质:
1、 需求分析能力
2、 整体框架能力
3、 流程处理能力
4、 模块分解能力
5、 整体项目评估能力
6、 团队组织管理能力
1,激情。
我曾经遇到许多“职业程序员”,他们从事IT是因为觉得这是一种职业,他们只在工作时间编程,除非送去培训否则他们不会学习新东西,这不是好的程序员。我认为一个好的程序员总是对编程充满激情,而且好的开发者会做一些编程工作即使这没有报酬。激情是一个优秀程序员的重要指标。
2,自学好学
编程领域始终发展变化着,不出一年有些新技术就变成了老技术,这并不是说好的程序员要对所有新技术跟进,但有些却对学习任何新技术都没有兴趣。他们通常在学校学习了编程,然后工作后单位安排学什么就学什么。如果在招聘中你听到“让我培训一个星期我就会胜任这个工作”那不要雇佣他。实际上,真正优秀的程序员始终谈论着你所不知道的新技术,向人们解释为什么你必须用这个技术,哪怕没有听众听得明白,哪怕他自己也不明白。
3,聪明
聪明包括很多因素,情绪和社会交际只是其中之一。好的程序员绝不木讷,他们是最聪明的人,他们中的许多善于交际,健谈、兴趣广泛。
4,隐性的经验
—好的程序员通。常有自己的私人的一些研究、爱好、项目,而这些是他们不写在简历上 (通常觉得不值得写),但表现出来却可能恰恰是他的潜能、深度和后劲所在。
5,技术多样性
由于好的程序员喜欢学习和涉猎新技术,所以一般来说超过22岁的都熟知很多新技术,而且对多种技术的长短有 “强烈”的个人意见/见解,喜好尝试新鲜技术。
6,资格证书
资格证书并不是识别真正程序员的方法,MCSE、SCJP、说明不了什么,它们只是让别人认识和获取的,顶多代表这个人在某个技术有一定的知识。
原文作者在文末写道:以上所说的标准并不是绝对的,因为有些优秀的程序员确实不符合上述,而有些bad程序员却符合了。但相信这些对大多数真正的程序员都适用。
总结而言,优秀的程序员通常有一下特点:
n 对技术充满激情;
n 将编程作为一种爱好
n 如果你允许会滔滔不绝地跟你谈论技术
n 有过个人的开发经历(与4意思相同)
n 坚持认为某种技术最好
n 如果让他用他认为不好的技术他会非常别扭
n 聪明、健谈、兴趣广泛
n 在大学和工作前就开始接触程序
1.大数据是什么?
大数据是最近IT界最常用的术语之一。然而对大数据的定义也不尽相同,所有已知的论点例如结构化的和非结构化、大规模的数据等等都不够完整。大数据系统通常被认为具有数据的五个主要特征,通常称为数据的5 Vs。分别是大规模,多样性,高效性、准确性和价值性。
据Gartner称,大规模可以被定义为“在本(地)机数据采集和处理技术能力不足以为用户带来商业价值。当现有的技术能够针对性的进行改造后来处理这种规模的数据就可以说是一个成功的大数据解决方案。
这种大规模的数据没将不仅仅是来自于现有的数据源,同时也会来自于一些新兴的数据源,例如常规(手持、工业)设备,日志,汽车等,当然包括结构化的和非结构化的数据。
据Gartner称,多样性可以定义如下:“高度变异的信息资产,在生产和消费时不进行严格定义的包括多种形式、类型和结构的组合。同时还包括以前的历史数据,由于技术的变革历史数据同样也成为多样性数据之一 “。
高效性可以被定义为来自不同源的数据到达的速度。从各种设备,传感器和其他有组织和无组织的数据流都在不断进入IT系统。由此,实时分析和对于该数据的解释(展示)的能力也应该随之增加。
根据Gartner,高效性可以被定义如下:“高速的数据流I/O(生产和消费),但主要聚焦在一个数据集内或多个数据集之间的数据生产的速率可变上”。
准确性,或真实性或叫做精度是数据的另一个重要组成方面。要做出正确的商业决策,当务之急是在数据上进行的所有分析必须是正确和准确(精确)的。
大数据系统可以提供巨大的商业价值。像电信,金融,电子商务,社交媒体等,已经认识到他们的数据是一个潜在的巨大的商机。他们可以预测用户行为,并推荐相关产品,提供危险交易预警服务,等等。
与其他IT系统一样,性能是大数据系统获得成功的关键。本文的中心主旨是要说明如何让大数据系统保证其性能。
2.大数据系统应包含的功能模块
大数据系统应该包含的功能模块,首先是能够从多种数据源获取数据的功能,数据的预处理(例如,清洗,验证等),存储数据,数据处理、数据分析等(例如做预测分析,生成在线使用建议等等),最后呈现和可视化的总结、汇总结果。
下图描述了大数据系统的这些高层次的组件:
2.1各种各样的数据源
当今的IT生态系统,需要对各种不同种类来源的数据进行分析。这些来源可能是从在线Web应用程序,批量上传或feed,流媒体直播数据,来自工业、手持、家居传感的任何东西等等。
显然从不同数据源获取的数据具有不同的格式、使用不同的协议。例如,在线的Web应用程序可能会使用SOAP / XML格式通过HTTP发送数据,feed可能会来自于CSV文件,其他设备则可能使用MQTT通信协议。
由于这些单独的系统的性能是不在大数据系统的控制范围之内,并且通常这些系统都是外部应用程序,由第三方供应商或团队提供并维护,所以本文将不会在深入到这些系统的性能分析中去。
2.2数据采集
第一步,获取数据。这个过程包括分析,验证,清洗,转换,去重,然后存到适合你们公司的一个持久化设备中(硬盘、存储、云等)。
在下面的章节中,本文将重点介绍一些关于如何获取数据方面的非常重要的技巧。请注意,本文将不讨论各种数据采集技术的优缺点。
2.3存储数据
第二步,一旦数据进入大数据系统,清洗,并转化为所需格式时,这些过程都将在数据存储到一个合适的持久化层中进行。
在下面的章节中,本文将介绍一些存储方面的最佳实践(包括逻辑上和物理上)。在本文结尾也会讨论一部分涉及数据安全方面的问题。
2.4数据处理和分析
第三步,在这一阶段中的一部分干净数据是去规范化的,包括对一些相关的数据集的数据进行一些排序,在规定的时间间隔内进行数据结果归集,执行机器学习算法,预测分析等。
在下面的章节中,本文将针对大数据系统性能优化介绍一些进行数据处理和分析的最佳实践。
2.5数据的可视化和数据展示
最后一个步骤,展示经过各个不同分析算法处理过的数据结果。该步骤包括从预先计算汇总的结果(或其他类似数据集)中的读取和用一种友好界面或者表格(图表等等)的形式展示出来。这样便于对于数据分析结果的理解。
3.数据采集中的性能技巧
数据采集是各种来自不同数据源的数据进入大数据系统的第一步。这个步骤的性能将会直接决定在一个给定的时间段内大数据系统能够处理的数据量的能力。
数据采集过程基于对该系统的个性化需求,但一些常用执行的步骤是 – 解析传入数据,做必要的验证,数据清晰,例如数据去重,转换格式,并将其存储到某种持久层。
涉及数据采集过程的逻辑步骤示如下图所示:
下面是一些性能方面的技巧:
●来自不同数据源的传输应该是异步的。可以使用文件来传输、或者使用面向消息的(MoM)中间件来实现。由于数据异步传输,所以数据采集过程的吞吐量可以大大高于大数据系统的处理能力。 异步数据传输同样可以在大数据系统和不同的数据源之间进行解耦。大数据基础架构设计使得其很容易进行动态伸缩,数据采集的峰值流量对于大数据系统来说算是安全的。
●如果数据是直接从一些外部数据库中抽取的,确保拉取数据是使用批量的方式。
●如果数据是从feed file解析,请务必使用合适的解析器。例如,如果从一个XML文件中读取也有不同的解析器像JDOM,SAX,DOM等。类似地,对于CSV,JSON和其它这样的格式,多个解析器和API是可供选择。选择能够符合需求的性能最好的。
●优先使用内置的验证解决方案。大多数解析/验证工作流程的通常运行在服务器环境(ESB /应用服务器)中。大部分的场景基本上都有现成的标准校验工具。在大多数的情况下,这些标准的现成的工具一般来说要比你自己开发的工具性能要好很多。
●类似地,如果数据XML格式的,优先使用XML(XSD)用于验证。
●即使解析器或者校等流程使用自定义的脚本来完成,例如使用java优先还是应该使用内置的函数库或者开发框架。在大多数的情况下通常会比你开发任何自定义代码快得多。
●尽量提前滤掉无效数据,以便后续的处理流程都不用在无效数据上浪费过多的计算能力。
●大多数系统处理无效数据的做法通常是存放在一个专门的表中,请在系统建设之初考虑这部分的数据库存储和其他额外的存储开销。
●如果来自数据源的数据需要清洗,例如去掉一些不需要的信息,尽量保持所有数据源的抽取程序版本一致,确保一次处理的是一个大批量的数据,而不是一条记录一条记录的来处理。一般来说数据清洗需要进行表关联。数据清洗中需要用到的静态数据关联一次,并且一次处理一个很大的批量就能够大幅提高数据处理效率。
●数据去重非常重要这个过程决定了主键的是由哪些字段构成。通常主键都是时间戳或者id等可以追加的类型。一般情况下,每条记录都可能根据主键进行索引来更新,所以最好能够让主键简单一些,以保证在更新的时候检索的性能。
●来自多个源接收的数据可以是不同的格式。有时,需要进行数据移植,使接收到的数据从多种格式转化成一种或一组标准格式。
●和解析过程一样,我们建议使用内置的工具,相比于你自己从零开发的工具性能会提高很多。
●数据移植的过程一般是数据处理过程中最复杂、最紧急、消耗资源最多的一步。因此,确保在这一过程中尽可能多的使用并行计算。
●一旦所有的数据采集的上述活动完成后,转换后的数据通常存储在某些持久层,以便以后分析处理,综述,聚合等使用。
●多种技术解决方案的存在是为了处理这种持久(RDBMS,NoSQL的分布式文件系统,如Hadoop和等)。
●谨慎选择一个能够最大限度的满足需求的解决方案。
4.数据存储中的性能技巧
一旦所有的数据采集步骤完成后,数据将进入持久层。
在本节中将讨论一些与数据数据存储性能相关的技巧包括物理存储优化和逻辑存储结构(数据模型)。这些技巧适用于所有的数据处理过程,无论是一些解析函数生的或最终输出的数据还是预计算的汇总数据等。
●首先选择数据范式。您对数据的建模方式对性能有直接的影响,例如像数据冗余,磁盘存储容量等方面。对于一些简单的文件导入数据库中的场景,你也许需要保持数据原始的格式,对于另外一些场景,如执行一些分析计算聚集等,你可能不需要将数据范式化。
●大多数的大数据系统使用NoSQL数据库替代RDBMS处理数据。
●不同的NoSQL数据库适用不同的场景,一部分在select时性能更好,有些是在插入或者更新性能更好。
●数据库分为行存储和列存储。
●具体的数据库选型依赖于你的具体需求(例如,你的应用程序的数据库读写比)。
●同样每个数据库都会根据不同的配置从而控制这些数据库用于数据库复制备份或者严格保持数据一致性。
●这些设置会直接影响数据库性能。在数据库技术选型前一定要注意。
●压缩率、缓冲池、超时的大小,和缓存的对于不同的NoSQL数据库来说配置都是不同的,同时对数据库性能的影响也是不一样的。
●数据Sharding和分区是这些数据库的另一个非常重要的功能。数据Sharding的方式能够对系统的性能产生巨大的影响,所以在数据Sharding和分区时请谨慎选择。
●并非所有的NoSQL数据库都内置了支持连接,排序,汇总,过滤器,索引等。
●如果有需要还是建议使用内置的类似功能,因为自己开发的还是不灵。
●NoSQLs内置了压缩、编解码器和数据移植工具。如果这些可以满足您的部分需求,那么优先选择使用这些内置的功能。这些工具可以执行各种各样的任务,如格式转换、压缩数据等,使用内置的工具不仅能够带来更好的性能还可以降低网络的使用率。
●许多NoSQL数据库支持多种类型的文件系统。其中包括本地文件系统,分布式文件系统,甚至基于云的存储解决方案。
●如果在交互式需求上有严格的要求,否则还是尽量尝试使用NoSQL本地(内置)文件系统(例如HBase 使用HDFS)。
●这是因为,如果使用一些外部文件系统/格式,则需要对数据进行相应的编解码/数据移植。它将在整个读/写过程中增加原本不必要的冗余处理。
●大数据系统的数据模型一般来说需要根据需求用例来综合设计。与此形成鲜明对比的是RDMBS数据建模技术基本都是设计成为一个通用的模型,用外键和表之间的关系用来描述数据实体与现实世界之间的交互。
●在硬件一级,本地RAID模式也许不太适用。请考虑使用SAN存储。
5.数据处理分析中的性能技巧
数据处理和分析是一个大数据系统的核心。像聚合,预测,聚集,和其它这样的逻辑操作都需要在这一步完成。
本节讨论一些数据处理性能方面的技巧。需要注意的是大数据系统架构有两个组成部分,实时数据流处理和批量数据处理。本节涵盖数据处理的各个方面。
●在细节评估和数据格式和模型后选择适当的数据处理框架。
●其中一些框架适用于批量数据处理,而另外一些适用于实时数据处理。
●同样一些框架使用内存模式,另外一些是基于磁盘io处理模式。
●有些框架擅长高度并行计算,这样能够大大提高数据效率。
●基于内存的框架性能明显优于基于磁盘io的框架,但是同时成本也可想而知。
●概括地说,当务之急是选择一个能够满足需求的框架。否则就有可能既无法满足功能需求也无法满足非功能需求,当然也包括性能需求。
●一些这些框架将数据划分成较小的块。这些小数据块由各个作业独立处理。协调器管理所有这些独立的子作业
●在数据分块是需要当心。
●该数据快越小,就会产生越多的作业,这样就会增加系统初始化作业和清理作业的负担。
●如果数据快太大,数据传输可能需要很长时间才能完成。这也可能导致资源利用不均衡,长时间在一台服务器上运行一个大作业,而其他服务器就会等待。
●不要忘了查看一个任务的作业总数。在必要时调整这个参数。
●最好实时监控数据块的传输。在本机机型io的效率会更高,这么做也会带来一个副作用就是需要将数据块的冗余参数提高(一般hadoop默认是3份)这样又会反作用使得系统性能下降。
●此外,实时数据流需要与批量数据处理的结果进行合并。设计系统时尽量减少对其他作业的影响。
●大多数情况下同一数据集需要经过多次计算。这种情况可能是由于数据抓取等初始步骤就有报错,或者某些业务流程发生变化,值得一提的是旧数据也是如此。设计系统时需要注意这个地方的容错。
●这意味着你可能需要存储原始数据的时间较长,因此需要更多的存储。
●数据结果输出后应该保存成用户期望看到的格式。例如,如果最终的结果是用户要求按照每周的时间序列汇总输出,那么你就要将结果以周为单位进行汇总保存。
●为了达到这个目标,大数据系统的数据库建模就要在满足用例的前提下进行。例如,大数据系统经常会输出一些结构化的数据表,这样在展示输出上就有很大的优势。
●更常见的是,这可能会这将会让用户感觉到性能问题。例如用户只需要上周的数据汇总结果,如果在数据规模较大的时候按照每周来汇总数据,这样就会大大降低数据处理能力。
●一些框架提供了大数据查询懒评价功能。在数据没有在其他地方被使用时效果不错。
●实时监控系统的性能,这样能够帮助你预估作业的完成时间。
6.数据可视化和展示中的性能技巧
精心设计的高性能大数据系统通过对数据的深入分析,能够提供有价值战略指导。这就是可视化的用武之地。良好的可视化帮助用户获取数据的多维度透视视图。
需要注意的是传统的BI和报告工具,或用于构建自定义报表系统无法大规模扩展满足大数据系统的可视化需求。同时,许多COTS可视化工具现已上市。
本文将不会对这些个别工具如何进行调节,而是聚焦在一些通用的技术,帮助您能打造可视化层。
●确保可视化层显示的数据都是从最后的汇总输出表中取得的数据。这些总结表可以根据时间短进行汇总,建议使用分类或者用例进行汇总。这么做可以避免直接从可视化层读取整个原始数据。
●这不仅最大限度地减少数据传输,而且当用户在线查看在报告时还有助于避免性能卡顿问题。
●重分利用大化可视化工具的缓存。缓存可以对可视化层的整体性能产生非常不错的影响。
●物化视图是可以提高性能的另一个重要的技术。
●大部分可视化工具允许通过增加线程数来提高请求响应的速度。如果资源足够、访问量较大那么这是提高系统性能的好办法。
●尽量提前将数据进行预处理,如果一些数据必须在运行时计算请将运行时计算简化到最小。
●可视化工具可以按照各种各样的展示方法对应不同的读取策略。其中一些是离线模式、提取模式或者在线连接模式。每种服务模式都是针对不同场景设计的。
●同样,一些工具可以进行增量数据同步。这最大限度地减少了数据传输,并将整个可视化过程固化下来。
●保持像图形,图表等使用最小的尺寸。
●大多数可视化框架和工具的使用可缩放矢量图形(SVG)。使用SVG复杂的布局可能会产生严重的性能影响。
7.数据安全以及对于性能的影响
像任何IT系统一样安全性要求也对大数据系统的性能有很大的影响。在本节中,我们讨论一下安全对大数据平台性能的影响。
– 首先确保所有的数据源都是经过认证的。即使所有的数据源都是安全的,并且没有针对安全方面的需求,那么你可以灵活设计一个安全模块来配置实现。
– 数据进过一次认证,那么就不要进行二次认证。如果实在需要进行二次认证,那么使用一些类似于token的技术保存下来以便后续继续使用。这将节省数据一遍遍认证的开销。
– 您可能需要支持其他的认证方式,例如基于PKI解决方案或Kerberos。每一个都有不同的性能指标,在最终方案确定前需要将其考虑进去。
– 通常情况下数据压缩后进入大数据处理系统。这么做好处非常明显不细说。
– 针对不同算法的效率、对cpu的使用量你需要进行比较来选出一个传输量、cpu使用量等方面均衡的压缩算法。
– 同样,评估加密逻辑和算法,然后再选择。
– 明智的做法是敏感信息始终进行限制。
– 在审计跟踪表或登录时您可能需要维护记录或类似的访问,更新等不同的活动记录。这可能需要根据不同的监管策略和用户需求个性化的进行设计和修改。
– 注意,这种需求不仅增加了数据处理的复杂度,但会增加存储成本。
– 尽量使用下层提供的安全技术,例如操作系统、数据库等。这些安全解决方案会比你自己设计开发性能要好很多。
8.总结
本文介绍了各种性能方面的技巧,这些技术性的知道可以作为打造大数据分析平台的一般准则。大数据分析平台非常复杂,为了满足这种类型系统的性能需求,需要我们从开始建设的时候进行考量。
本文介绍的技术准则可以用在大数据平台建设的各个不同阶段,包括安全如何影响大数据分析平台的性能。