大橙子网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

B-tree索引怎么在PostgreSQL中使用-创新互联

这篇文章将为大家详细讲解有关B-tree索引怎么在PostgreSQL中使用,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。

创新互联建站始终坚持【策划先行,效果至上】的经营理念,通过多达十年累计超上千家客户的网站建设总结了一套系统有效的推广解决方案,现已广泛运用于各行各业的客户,其中包括:成都柔性防护网等企业,备受客户赞美。

结构

B-tree索引适合用于存储排序的数据。对于这种数据类型需要定义大于、大于等于、小于、小于等于操作符。

通常情况下,B-tree的索引记录存储在数据页中。叶子页中的记录包含索引数据(keys)以及指向heap tuple记录(即表的行记录TIDs)的指针。内部页中的记录包含指向索引子页的指针和子页中最小值。

B-tree有几点重要的特性:

1、B-tree是平衡树,即每个叶子页到root页中间有相同个数的内部页。因此查询任何一个值的时间是相同的。

2、B-tree中一个节点有多个分支,即每页(通常8KB)具有许多TIDs。因此B-tree的高度比较低,通常4到5层就可以存储大量行记录。

3、索引中的数据以非递减的顺序存储(页之间以及页内都是这种顺序),同级的数据页由双向链表连接。因此不需要每次都返回root,通过遍历链表就可以获取一个有序的数据集。

下面是一个索引的简单例子,该索引存储的记录为整型并只有一个字段:

B-tree索引怎么在PostgreSQL中使用

该索引最顶层的页是元数据页,该数据页存储索引root页的相关信息。内部节点位于root下面,叶子页位于最下面一层。向下的箭头表示由叶子节点指向表记录(TIDs)。

等值查询

例如通过"indexed-field = expression"形式的条件查询49这个值。

B-tree索引怎么在PostgreSQL中使用

root节点有三个记录:(4,32,64)。从root节点开始进行搜索,由于32≤ 49 < 64,所以选择32这个值进入其子节点。通过同样的方法继续向下进行搜索一直到叶子节点,最后查询到49这个值。

实际上,查询算法远不止看上去的这么简单。比如,该索引是非索引时,允许存在许多相同值的记录,并且这些相同的记录不止存放在一个页中。此时该如何查询?我们返回到上面的的例子,定位到第二层节点(32,43,49)。如果选择49这个值并向下进入其子节点搜索,就会跳过前一个叶子页中的49这个值。因此,在内部节点进行等值查询49时,定位到49这个值,然后选择49的前一个值43,向下进入其子节点进行搜索。最后,在底层节点中从左到右进行搜索。

(另外一个复杂的地方是,查询的过程中树结构可能会改变,比如分裂)

非等值查询

通过"indexed-field ≤ expression" (or "indexed-field ≥ expression")查询时,首先通过"indexed-field = expression"形式进行等值(如果存在该值)查询,定位到叶子节点后,再向左或向右进行遍历检索。

下图是查询 n ≤ 35的示意图:

B-tree索引怎么在PostgreSQL中使用

大于和小于可以通过同样的方法进行查询。查询时需要排除等值查询出的值。

范围查询

范围查询"expression1 ≤ indexed-field ≤ expression2"时,需要通过 "expression1 ≤ indexed-field =expression2"找到一匹配值,然后在叶子节点从左到右进行检索,一直到不满足"indexed-field ≤ expression2" 的条件为止;或者反过来,首先通过第二个表达式进行检索,在叶子节点定位到该值后,再从右向左进行检索,一直到不满足第一个表达式的条件为止。

下图是23 ≤ n ≤ 64的查询示意图:

B-tree索引怎么在PostgreSQL中使用

案例

下面是一个查询计划的实例。通过demo database中的aircraft表进行介绍。该表有9行数据,由于整个表只有一个数据页,所以执行计划不会使用索引。为了解释说明问题,我们使用整个表进行说明。

demo=# select * from aircrafts;
 aircraft_code |  model  | range
---------------+---------------------+-------
 773   | Boeing 777-300  | 11100
 763   | Boeing 767-300  | 7900
 SU9   | Sukhoi SuperJet-100 | 3000
 320   | Airbus A320-200  | 5700
 321   | Airbus A321-200  | 5600
 319   | Airbus A319-100  | 6700
 733   | Boeing 737-300  | 4200
 CN1   | Cessna 208 Caravan | 1200
 CR2   | Bombardier CRJ-200 | 2700
(9 rows)
demo=# create index on aircrafts(range);
demo=# set enable_seqscan = off;

(更准确的方式:create index on aircrafts using btree(range),创建索引时默认构建B-tree索引。)

等值查询的执行计划:

demo=# explain(costs off) select * from aircrafts where range = 3000;
     QUERY PLAN      
---------------------------------------------------
 Index Scan using aircrafts_range_idx on aircrafts
 Index Cond: (range = 3000)
(2 rows)

非等值查询的执行计划:

demo=# explain(costs off) select * from aircrafts where range < 3000;
     QUERY PLAN     
---------------------------------------------------
 Index Scan using aircrafts_range_idx on aircrafts
 Index Cond: (range < 3000)
(2 rows)

范围查询的执行计划:

demo=# explain(costs off) select * from aircrafts
where range between 3000 and 5000;
      QUERY PLAN      
-----------------------------------------------------
 Index Scan using aircrafts_range_idx on aircrafts
 Index Cond: ((range >= 3000) AND (range <= 5000))
(2 rows)

排序

再次强调,通过index、index-only或bitmap扫描,btree访问方法可以返回有序的数据。因此如果表的排序条件上有索引,优化器会考虑以下方式:表的索引扫描;表的顺序扫描然后对结果集进行排序。

排序顺序

当创建索引时可以明确指定排序顺序。如下所示,在range列上建立一个索引,并且排序顺序为降序:

demo=# create index on aircrafts(range desc);

本案例中,大值会出现在树的左边,小值出现在右边。为什么有这样的需求?这样做是为了多列索引。创建aircraft的一个视图,通过range分成3部分:

demo=# create view aircrafts_v as
select model,
  case
   when range < 4000 then 1
   when range < 10000 then 2
   else 3
  end as class
from aircrafts; 
 
demo=# select * from aircrafts_v;
  model  | class
---------------------+-------
 Boeing 777-300  |  3
 Boeing 767-300  |  2
 Sukhoi SuperJet-100 |  1
 Airbus A320-200  |  2
 Airbus A321-200  |  2
 Airbus A319-100  |  2
 Boeing 737-300  |  2
 Cessna 208 Caravan |  1
 Bombardier CRJ-200 |  1
(9 rows)

然后创建一个索引(使用下面表达式):

demo=# create index on aircrafts(
 (case when range < 4000 then 1 when range < 10000 then 2 else 3 end),
 model);

现在,可以通过索引以升序的方式获取排序的数据:

demo=# select class, model from aircrafts_v order by class, model;
 class |  model  
-------+---------------------
  1 | Bombardier CRJ-200
  1 | Cessna 208 Caravan
  1 | Sukhoi SuperJet-100
  2 | Airbus A319-100
  2 | Airbus A320-200
  2 | Airbus A321-200
  2 | Boeing 737-300
  2 | Boeing 767-300
  3 | Boeing 777-300
(9 rows) 
 
demo=# explain(costs off)
select class, model from aircrafts_v order by class, model;
      QUERY PLAN      
--------------------------------------------------------
 Index Scan using aircrafts_case_model_idx on aircrafts
(1 row)

同样,可以以降序的方式获取排序的数据:

demo=# select class, model from aircrafts_v order by class desc, model desc;
 class |  model  
-------+---------------------
  3 | Boeing 777-300
  2 | Boeing 767-300
  2 | Boeing 737-300
  2 | Airbus A321-200
  2 | Airbus A320-200
  2 | Airbus A319-100
  1 | Sukhoi SuperJet-100
  1 | Cessna 208 Caravan
  1 | Bombardier CRJ-200
(9 rows)
demo=# explain(costs off)
select class, model from aircrafts_v order by class desc, model desc;
       QUERY PLAN       
-----------------------------------------------------------------
 Index Scan BACKWARD using aircrafts_case_model_idx on aircrafts
(1 row)

然而,如果一列以升序一列以降序的方式获取排序的数据的话,就不能使用索引,只能单独排序:

demo=# explain(costs off)
select class, model from aircrafts_v order by class ASC, model DESC;
     QUERY PLAN     
-------------------------------------------------
 Sort
 Sort Key: (CASE ... END), aircrafts.model DESC
 -> Seq Scan on aircrafts
(3 rows)

(注意,最终执行计划会选择顺序扫描,忽略之前设置的enable_seqscan = off。因为这个设置并不会放弃表扫描,只是设置他的成本----查看costs on的执行计划)

若有使用索引,创建索引时指定排序的方向:

demo=# create index aircrafts_case_asc_model_desc_idx on aircrafts(
 (case
 when range < 4000 then 1
 when range < 10000 then 2
 else 3
 end) ASC,
 model DESC); 
 
demo=# explain(costs off)
select class, model from aircrafts_v order by class ASC, model DESC;
       QUERY PLAN       
-----------------------------------------------------------------
 Index Scan using aircrafts_case_asc_model_desc_idx on aircrafts
(1 row)

列的顺序

当使用多列索引时与列的顺序有关的问题会显示出来。对于B-tree,这个顺序非常重要:页中的数据先以第一个字段进行排序,然后再第二个字段,以此类推。

下图是在range和model列上构建的索引:

B-tree索引怎么在PostgreSQL中使用

当然,上图这么小的索引在一个root页足以存放。但是为了清晰起见,特意将其分成几页。

从图中可见,通过类似的谓词class = 3(仅按第一个字段进行搜索)或者class = 3 and model = 'Boeing 777-300'(按两个字段进行搜索)将非常高效。

然而,通过谓词model = 'Boeing 777-300'进行搜索的效率将大大降低:从root开始,判断不出选择哪个子节点进行向下搜索,因此会遍历所有子节点向下进行搜索。这并不意味着永远无法使用这样的索引----它的效率有问题。例如,如果aircraft有3个classes值,每个class类中有许多model值,此时不得不扫描索引1/3的数据,这可能比全表扫描更有效。

但是,当创建如下索引时:

demo=# create index on aircrafts(
 model,
 (case when range < 4000 then 1 when range < 10000 then 2 else 3 end));

索引字段的顺序会改变:

B-tree索引怎么在PostgreSQL中使用

通过这个索引,model = 'Boeing 777-300'将会很有效,但class = 3则没这么高效。

NULLs

PostgreSQL的B-tree支持在NULLs上创建索引,可以通过IS NULL或者IS NOT NULL的条件进行查询。

考虑flights表,允许NULLs:

demo=# create index on flights(actual_arrival);
demo=# explain(costs off) select * from flights where actual_arrival is null;
      QUERY PLAN      
-------------------------------------------------------
 Bitmap Heap Scan on flights
 Recheck Cond: (actual_arrival IS NULL)
 -> Bitmap Index Scan on flights_actual_arrival_idx
   Index Cond: (actual_arrival IS NULL)
(4 rows)

NULLs位于叶子节点的一端或另一端,这依赖于索引的创建方式(NULLS FIRST或NULLS LAST)。如果查询中包含排序,这就显得很重要了:如果SELECT语句在ORDER BY子句中指定NULLs的顺序索引构建的顺序一样(NULLS FIRST或NULLS LAST),就可以使用整个索引。

下面的例子中,他们的顺序相同,因此可以使用索引:

demo=# explain(costs off)
select * from flights order by actual_arrival NULLS LAST;
      QUERY PLAN      
--------------------------------------------------------
 Index Scan using flights_actual_arrival_idx on flights
(1 row)

下面的例子,顺序不同,优化器选择顺序扫描然后进行排序:

demo=# explain(costs off)
select * from flights order by actual_arrival NULLS FIRST;
    QUERY PLAN    
----------------------------------------
 Sort
 Sort Key: actual_arrival NULLS FIRST
 -> Seq Scan on flights
(3 rows)

NULLs必须位于开头才能使用索引:

demo=# create index flights_nulls_first_idx on flights(actual_arrival NULLS FIRST);
demo=# explain(costs off)
select * from flights order by actual_arrival NULLS FIRST;
      QUERY PLAN      
-----------------------------------------------------
 Index Scan using flights_nulls_first_idx on flights
(1 row)

像这样的问题是由NULLs引起的而不是无法排序,也就是说NULL和其他这比较的结果无法预知:

demo=# \pset null NULL
demo=# select null < 42;
 ?column?
----------
 NULL
(1 row)

这和B-tree的概念背道而驰并且不符合一般的模式。然而NULLs在数据库中扮演者很重要的角色,因此不得不为NULL做特殊设置。

由于NULLs可以被索引,因此即使表上没有任何标记也可以使用索引。(因为这个索引包含表航记录的所有信息)。如果查询需要排序的数据,而且索引确保了所需的顺序,那么这可能是由意义的。这种情况下,查询计划更倾向于通过索引获取数据。

属性

下面介绍btree访问方法的特性。

 amname |  name  | pg_indexam_has_property
--------+---------------+-------------------------
 btree | can_order  | t
 btree | can_unique | t
 btree | can_multi_col | t
 btree | can_exclude | t

可以看到,B-tree能够排序数据并且支持性。同时还支持多列索引,但是其他访问方法也支持这种索引。我们将在下次讨论EXCLUDE条件。

  name  | pg_index_has_property
---------------+-----------------------
 clusterable | t
 index_scan | t
 bitmap_scan | t
 backward_scan | t

Btree访问方法可以通过以下两种方式获取数据:index scan以及bitmap scan。可以看到,通过tree可以向前和向后进行遍历。

  name   | pg_index_column_has_property
--------------------+------------------------------
 asc    | t
 desc    | f
 nulls_first  | f
 nulls_last   | t
 orderable   | t
 distance_orderable | f
 returnable   | t
 search_array  | t
 search_nulls  | t

前四种特性指定了特定列如何精确的排序。本案例中,值以升序(asc)进行排序并且NULLs在后面(nulls_last)。也可以有其他组合。

search_array的特性支持向这样的表达式:

demo=# explain(costs off)
select * from aircrafts where aircraft_code in ('733','763','773');
       QUERY PLAN       
-----------------------------------------------------------------
 Index Scan using aircrafts_pkey on aircrafts
 Index Cond: (aircraft_code = ANY ('{733,763,773}'::bpchar[]))
(2 rows)

returnable属性支持index-only scan,由于索引本身也存储索引值所以这是合理的。下面简单介绍基于B-tree的覆盖索引。

具有额外列的索引

前面讨论了:覆盖索引包含查询所需的所有值,需不要再回表。索引可以成为覆盖索引。

假设我们查询所需要的列添加到索引,新的组合键可能不再,同一列上将需要2个索引:一个,支持完整性约束;另一个是非,为了覆盖索引。这当然是低效的。

在我们公司 Anastasiya Lubennikova @ lubennikovaav 改进了btree,额外的非列可以包含在索引中。我们希望这个补丁可以被社区采纳。实际上PostgreSQL11已经合了该补丁。

考虑表bookings:d

demo=# \d bookings
    Table "bookings.bookings"
 Column |   Type   | Modifiers
--------------+--------------------------+-----------
 book_ref  | character(6)    | not null
 book_date | timestamp with time zone | not null
 total_amount | numeric(10,2)   | not null
Indexes:
 "bookings_pkey" PRIMARY KEY, btree (book_ref)
Referenced by:
TABLE "tickets" CONSTRAINT "tickets_book_ref_fkey" FOREIGN KEY (book_ref) REFERENCES bookings(book_ref)

这个表中,主键(book_ref,booking code)通过常规的btree索引提供,下面创建一个由额外列的索引:

demo=# create unique index bookings_pkey2 on bookings(book_ref) INCLUDE (book_date);

然后使用新索引替代现有索引:

demo=# begin;
demo=# alter table bookings drop constraint bookings_pkey cascade;
demo=# alter table bookings add primary key using index bookings_pkey2;
demo=# alter table tickets add foreign key (book_ref) references bookings (book_ref);
demo=# commit;

然后表结构:

demo=# \d bookings
    Table "bookings.bookings"
 Column |   Type   | Modifiers
--------------+--------------------------+-----------
 book_ref  | character(6)    | not null
 book_date | timestamp with time zone | not null
 total_amount | numeric(10,2)   | not null
Indexes:
 "bookings_pkey2" PRIMARY KEY, btree (book_ref) INCLUDE (book_date)
Referenced by:
TABLE "tickets" CONSTRAINT "tickets_book_ref_fkey" FOREIGN KEY (book_ref) REFERENCES bookings(book_ref)

此时,这个索引可以作为索引工作也可以作为覆盖索引:

demo=# explain(costs off)
select book_ref, book_date from bookings where book_ref = '059FC4';
     QUERY PLAN     
--------------------------------------------------
 Index Only Scan using bookings_pkey2 on bookings
 Index Cond: (book_ref = '059FC4'::bpchar)
(2 rows)

创建索引

众所周知,对于大表,加载数据时好不要带索引;加载完成后再创建索引。这样做不仅提升效率还能节省空间。

创建B-tree索引比向索引中插入数据更高效。所有的数据大致上都已排序,并且数据的叶子页已创建好,然后只需构建内部页直到root页构建成一个完整的B-tree。

这种方法的速度依赖于RAM的大小,受限于参数maintenance_work_mem。因此增大该参数值可以提升速度。对于索引,除了分配maintenance_work_mem的内存外,还分配了work_mem的大小的内存。

比较

前面,提到PG需要知道对于不同类型的值调用哪个函数,并且这个关联方法存储在哈希访问方法中。同样,系统必须找出如何排序。这在排序、分组(有时)、merge join中会涉及。PG不会将自身绑定到操作符名称,因为用户可以自定义他们的数据类型并给出对应不同的操作符名称。

例如bool_ops操作符集中的比较操作符:

postgres=# select amop.amopopr::regoperator as opfamily_operator,
   amop.amopstrategy
from  pg_am am,
   pg_opfamily opf,
   pg_amop amop
where opf.opfmethod = am.oid
and  amop.amopfamily = opf.oid
and  am.amname = 'btree'
and  opf.opfname = 'bool_ops'
order by amopstrategy;
 opfamily_operator | amopstrategy
---------------------+--------------
 <(boolean,boolean) |   1
 <=(boolean,boolean) |   2
 =(boolean,boolean) |   3
 >=(boolean,boolean) |   4
 >(boolean,boolean) |   5
(5 rows)

这里可以看到有5种操作符,但是不应该依赖于他们的名字。为了指定哪种操作符做什么操作,引入策略的概念。为了描述操作符语义,定义了5种策略:

1 — less

2 — less or equal

3 — equal

4 — greater or equal

5 — greater

postgres=# select amop.amopopr::regoperator as opfamily_operator
from  pg_am am,
   pg_opfamily opf,
   pg_amop amop
where opf.opfmethod = am.oid
and  amop.amopfamily = opf.oid
and  am.amname = 'btree'
and  opf.opfname = 'integer_ops'
and  amop.amopstrategy = 1
order by opfamily_operator;
 pfamily_operator 
----------------------
 <(integer,bigint)
 <(smallint,smallint)
 <(integer,integer)
 <(bigint,bigint)
 <(bigint,integer)
 <(smallint,integer)
 <(integer,smallint)
 <(smallint,bigint)
 <(bigint,smallint)
(9 rows)

一些操作符族可以包含几种操作符,例如integer_ops包含策略1的几种操作符:

正因如此,当比较类型在一个操作符族中时,不同类型值的比较,优化器可以避免类型转换。

索引支持的新数据类型

文档中提供了一个创建符合数值的新数据类型,以及对这种类型数据进行排序的操作符类。该案例使用C语言完成。但不妨碍我们使用纯SQL进行对比试验。

创建一个新的组合类型:包含real和imaginary两个字段

postgres=# create type complex as (re float, im float);

创建一个包含该新组合类型字段的表:

postgres=# create table numbers(x complex);
postgres=# insert into numbers values ((0.0, 10.0)), ((1.0, 3.0)), ((1.0, 1.0));

现在有个疑问,如果在数学上没有为他们定义顺序关系,如何进行排序?

已经定义好了比较运算符:

postgres=# select * from numbers order by x;
 x 
--------
 (0,10)
 (1,1)
 (1,3)
(3 rows)

默认情况下,对于组合类型排序是分开的:首先比较第一个字段然后第二个字段,与文本字符串比较方法大致相同。但是我们也可以定义其他的排序方式,例如组合数字可以当做一个向量,通过模值进行排序。为了定义这样的顺序,我们需要创建一个函数:

postgres=# create function modulus(a complex) returns float as $$
 select sqrt(a.re*a.re + a.im*a.im);
$$ immutable language sql;
 
 
//此时,使用整个函数系统的定义5种操作符:
postgres=# create function complex_lt(a complex, b complex) returns boolean as $$
 select modulus(a) < modulus(b);
$$ immutable language sql;
 
postgres=# create function complex_le(a complex, b complex) returns boolean as $$
 select modulus(a) <= modulus(b);
$$ immutable language sql;
 
postgres=# create function complex_eq(a complex, b complex) returns boolean as $$
 select modulus(a) = modulus(b);
$$ immutable language sql;
 
postgres=# create function complex_ge(a complex, b complex) returns boolean as $$
 select modulus(a) >= modulus(b);
$$ immutable language sql;
 
postgres=# create function complex_gt(a complex, b complex) returns boolean as $$
 select modulus(a) > modulus(b);
$$ immutable language sql;

然后创建对应的操作符:

postgres=# create operator #<#(leftarg=complex, rightarg=complex, procedure=complex_lt);
postgres=# create operator #<=#(leftarg=complex, rightarg=complex, procedure=complex_le);
postgres=# create operator #=#(leftarg=complex, rightarg=complex, procedure=complex_eq);
postgres=# create operator #>=#(leftarg=complex, rightarg=complex, procedure=complex_ge);
postgres=# create operator #>#(leftarg=complex, rightarg=complex, procedure=complex_gt);

此时,可以比较数字:

postgres=# select (1.0,1.0)::complex #<# (1.0,3.0)::complex;
 ?column?
----------
 t
(1 row)

除了整个5个操作符,还需要定义函数:小于返回-1;等于返回0;大于返回1。其他访问方法可能需要定义其他函数:

postgres=# create function complex_cmp(a complex, b complex) returns integer as $$
 select case when modulus(a) < modulus(b) then -1
    when modulus(a) > modulus(b) then 1
    else 0
   end;
$$ language sql;

创建一个操作符类:

postgres=# create operator class complex_ops
default for type complex
using btree as
 operator 1 #<#,
 operator 2 #<=#,
 operator 3 #=#,
 operator 4 #>=#,
 operator 5 #>#,
function 1 complex_cmp(complex,complex);
 
//排序结果:
postgres=# select * from numbers order by x;
 x 
--------
 (1,1)
 (1,3)
 (0,10)
(3 rows)
 
//可以使用此查询获取支持的函数:
 
postgres=# select amp.amprocnum,
  amp.amproc,
  amp.amproclefttype::regtype,
  amp.amprocrighttype::regtype
from pg_opfamily opf,
  pg_am am,
  pg_amproc amp
where opf.opfname = 'complex_ops'
and opf.opfmethod = am.oid
and am.amname = 'btree'
and amp.amprocfamily = opf.oid;
 amprocnum | amproc | amproclefttype | amprocrighttype
-----------+-------------+----------------+-----------------
   1 | complex_cmp | complex  | complex
(1 row)

内部结构

使用pageinspect插件观察B-tree结构:

demo=# create extension pageinspect;

索引的元数据页:

demo=# select * from bt_metap('ticket_flights_pkey');
 magic | version | root | level | fastroot | fastlevel
--------+---------+------+-------+----------+-----------
 340322 |  2 | 164 |  2 |  164 |   2
(1 row)

值得关注的是索引level:不包括root,有一百万行记录的表其索引只需要2层就可以了。

Root页,即164号页面的统计信息:

demo=# select type, live_items, dead_items, avg_item_size, page_size, free_size
from bt_page_stats('ticket_flights_pkey',164);
 type | live_items | dead_items | avg_item_size | page_size | free_size
------+------------+------------+---------------+-----------+-----------
 r |   33 |   0 |   31 |  8192 |  6984
(1 row)

该页中数据:

demo=# select itemoffset, ctid, itemlen, left(data,56) as data
from bt_page_items('ticket_flights_pkey',164) limit 5;
 itemoffset | ctid | itemlen |       data       
------------+---------+---------+----------------------------------------------------------
   1 | (3,1) |  8 |
   2 | (163,1) |  32 | 1d 30 30 30 35 34 33 32 33 30 35 37 37 31 00 00 ff 5f 00
   3 | (323,1) |  32 | 1d 30 30 30 35 34 33 32 34 32 33 36 36 32 00 00 4f 78 00
   4 | (482,1) |  32 | 1d 30 30 30 35 34 33 32 35 33 30 38 39 33 00 00 4d 1e 00
   5 | (641,1) |  32 | 1d 30 30 30 35 34 33 32 36 35 35 37 38 35 00 00 2b 09 00
(5 rows)

第一个tuple指定该页的较大值,真正的数据从第二个tuple开始。很明显最左边子节点的页号是163,然后是323。反过来,可以使用相同的函数搜索。

PG10版本提供了"amcheck"插件,该插件可以检测B-tree数据的逻辑一致性,使我们提前探知故障。

关于B-tree索引怎么在PostgreSQL中使用就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。


文章题目:B-tree索引怎么在PostgreSQL中使用-创新互联
网页地址:http://dzwzjz.com/article/eegpc.html
在线咨询
服务热线
服务热线:028-86922220
TOP