大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
NoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题。
创新互联建站是一家集网站建设,陇南企业网站建设,陇南品牌网站建设,网站定制,陇南网站建设报价,网络营销,网络优化,陇南网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。
虽然NoSQL流行语火起来才短短一年的时间,但是不可否认,现在已经开始了第二代运动。尽管早期的堆栈代码只能算是一种实验,然而现在的系统已经更加的成熟、稳定。不过现在也面临着一个严酷的事实:技术越来越成熟——以至于原来很好的NoSQL数据存储不得不进行重写,也有少数人认为这就是所谓的2.0版本。这里列出一些比较知名的工具,可以为大数据建立快速、可扩展的存储库。
NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。
对于NoSQL并没有一个明确的范围和定义,但是他们都普遍存在下面一些共同特征:
不需要预定义模式:不需要事先定义数据模式,预定义表结构。数据中的每条记录都可能有不同的属性和格式。当插入数据时,并不需要预先定义它们的模式。
无共享架构:相对于将所有数据存储的存储区域网络中的全共享架构。NoSQL往往将数据划分后存储在各个本地服务器上。因为从本地磁盘读取数据的性能往往好于通过网络传输读取数据的性能,从而提高了系统的性能。
弹性可扩展:可以在系统运行的时候,动态增加或者删除结点。不需要停机维护,数据可以自动迁移。
分区:相对于将数据存放于同一个节点,NoSQL数据库需要将数据进行分区,将记录分散在多个节点上面。并且通常分区的同时还要做复制。这样既提高了并行性能,又能保证没有单点失效的问题。
异步复制:和RAID存储系统不同的是,NoSQL中的复制,往往是基于日志的异步复制。这样,数据就可以尽快地写入一个节点,而不会被网络传输引起迟延。缺点是并不总是能保证一致性,这样的方式在出现故障的时候,可能会丢失少量的数据。
BASE:相对于事务严格的ACID特性,NoSQL数据库保证的是BASE特性。BASE是最终一致性和软事务。
NoSQL数据库并没有一个统一的架构,两种NoSQL数据库之间的不同,甚至远远超过两种关系型数据库的不同。可以说,NoSQL各有所长,成功的NoSQL必然特别适用于某些场合或者某些应用,在这些场合中会远远胜过关系型数据库和其他的NoSQL。
特点:
它们可以处理超大量的数据。
它们运行在便宜的PC服务器集群上。
PC集群扩充起来非常方便并且成本很低,避免了“sharding”操作的复杂性和成本。
它们击碎了性能瓶颈。
NoSQL的支持者称,通过NoSQL架构可以省去将Web或Java应用和数据转换成SQL友好格式的时间,执行速度变得更快。
“SQL并非适用于所有的程序代码,” 对于那些繁重的重复操作的数据,SQL值得花钱。但是当数据库结构非常简单时,SQL可能没有太大用处。
没有过多的操作。
虽然NoSQL的支持者也承认关系数据库提供了无可比拟的功能集合,而且在数据完整性上也发挥绝对稳定,他们同时也表示,企业的具体需求可能没有那么多。
Bootstrap支持
因为NoSQL项目都是开源的,因此它们缺乏供应商提供的正式支持。这一点它们与大多数开源项目一样,不得不从社区中寻求支持。
优点:
易扩展
NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。
大数据量,高性能
NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一种大粒度的Cache,在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的 Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了。
灵活的数据模型
NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦。这点在大数据量的web2.0时代尤其明显。
高可用
NoSQL在不太影响性能的情况,就可以方便的实现高可用的架构。比如Cassandra,HBase模型,通过复制模型也能实现高可用。
主要应用:
Apache HBase
这个大数据管理平台建立在谷歌强大的BigTable管理引擎基础上。作为具有开源、Java编码、分布式多个优势的数据库,Hbase最初被设计应用于Hadoop平台,而这一强大的数据管理工具,也被Facebook采用,用于管理消息平台的庞大数据。
Apache Storm
用于处理高速、大型数据流的分布式实时计算系统。Storm为Apache Hadoop添加了可靠的实时数据处理功能,同时还增加了低延迟的仪表板、安全警报,改进了原有的操作方式,帮助企业更有效率地捕获商业机会、发展新业务。
Apache Spark
该技术采用内存计算,从多迭代批量处理出发,允许将数据载入内存做反复查询,此外还融合数据仓库、流处理和图计算等多种计算范式,Spark用Scala语言实现,构建在HDFS上,能与Hadoop很好的结合,而且运行速度比MapReduce快100倍。
Apache Hadoop
该技术迅速成为了大数据管理标准之一。当它被用来管理大型数据集时,对于复杂的分布式应用,Hadoop体现出了非常好的性能,平台的灵活性使它可以运行在商用硬件系统,它还可以轻松地集成结构化、半结构化和甚至非结构化数据集。
Apache Drill
你有多大的数据集?其实无论你有多大的数据集,Drill都能轻松应对。通过支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平台,允许大规模数据吞吐,而且能很快得出结果。
Apache Sqoop
也许你的数据现在还被锁定于旧系统中,Sqoop可以帮你解决这个问题。这一平台采用并发连接,可以将数据从关系数据库系统方便地转移到Hadoop中,可以自定义数据类型以及元数据传播的映射。事实上,你还可以将数据(如新的数据)导入到HDFS、Hive和Hbase中。
Apache Giraph
这是功能强大的图形处理平台,具有很好可扩展性和可用性。该技术已经被Facebook采用,Giraph可以运行在Hadoop环境中,可以将它直接部署到现有的Hadoop系统中。通过这种方式,你可以得到强大的分布式作图能力,同时还能利用上现有的大数据处理引擎。
Cloudera Impala
Impala模型也可以部署在你现有的Hadoop群集上,监视所有的查询。该技术和MapReduce一样,具有强大的批处理能力,而且Impala对于实时的SQL查询也有很好的效果,通过高效的SQL查询,你可以很快的了解到大数据平台上的数据。
Gephi
它可以用来对信息进行关联和量化处理,通过为数据创建功能强大的可视化效果,你可以从数据中得到不一样的洞察力。Gephi已经支持多个图表类型,而且可以在具有上百万个节点的大型网络上运行。Gephi具有活跃的用户社区,Gephi还提供了大量的插件,可以和现有系统完美的集成到一起,它还可以对复杂的IT连接、分布式系统中各个节点、数据流等信息进行可视化分析。
MongoDB
这个坚实的平台一直被很多组织推崇,它在大数据管理上有极好的性能。MongoDB最初是由DoubleClick公司的员工创建,现在该技术已经被广泛的应用于大数据管理。MongoDB是一个应用开源技术开发的NoSQL数据库,可以用于在JSON这样的平台上存储和处理数据。目前,纽约时报、Craigslist以及众多企业都采用了MongoDB,帮助他们管理大型数据集。(Couchbase服务器也作为一个参考)。
十大顶尖公司:
Amazon Web Services
Forrester将AWS称为“云霸主”,谈到云计算领域的大数据,那就不得不提到亚马逊。该公司的Hadoop产品被称为EMR(Elastic Map Reduce),AWS解释这款产品采用了Hadoop技术来提供大数据管理服务,但它不是纯开源Hadoop,经过修改后现在被专门用在AWS云上。
Forrester称EMR有很好的市场前景。很多公司基于EMR为客户提供服务,有一些公司将EMR应用于数据查询、建模、集成和管理。而且AWS还在创新,Forrester称未来EMR可以基于工作量的需要自动缩放调整大小。亚马逊计划为其产品和服务提供更强大的EMR支持,包括它的RedShift数据仓库、新公布的Kenesis实时处理引擎以及计划中的NoSQL数据库和商业智能工具。不过AWS还没有自己的Hadoop发行版。
Cloudera
Cloudera有开源Hadoop的发行版,这个发行版采用了Apache Hadoop开源项目的很多技术,不过基于这些技术的发行版也有很大的进步。Cloudera为它的Hadoop发行版开发了很多功能,包括Cloudera管理器,用于管理和监控,以及名为Impala的SQL引擎等。Cloudera的Hadoop发行版基于开源Hadoop,但也不是纯开源的产品。当Cloudera的客户需要Hadoop不具备的某些功能时,Cloudera的工程师们就会实现这些功能,或者找一个拥有这项技术的合作伙伴。Forrester表示:“Cloudera的创新方法忠于核心Hadoop,但因为其可实现快速创新并积极满足客户需求,这一点使它不同于其他那些供应商。”目前,Cloudera的平台已经拥有200多个付费客户,一些客户在Cloudera的技术支持下已经可以跨1000多个节点实现对PB级数据的有效管理。
Hortonworks
和Cloudera一样,Hortonworks是一个纯粹的Hadoop技术公司。与Cloudera不同的是,Hortonworks坚信开源Hadoop比任何其他供应商的Hadoop发行版都要强大。Hortonworks的目标是建立Hadoop生态圈和Hadoop用户社区,推进开源项目的发展。Hortonworks平台和开源Hadoop联系紧密,公司管理人员表示这会给用户带来好处,因为它可以防止被供应商套牢(如果Hortonworks的客户想要离开这个平台,他们可以轻松转向其他开源平台)。这并不是说Hortonworks完全依赖开源Hadoop技术,而是因为该公司将其所有开发的成果回报给了开源社区,比如Ambari,这个工具就是由Hortonworks开发而成,用来填充集群管理项目漏洞。Hortonworks的方案已经得到了Teradata、Microsoft、Red Hat和SAP这些供应商的支持。
IBM
当企业考虑一些大的IT项目时,很多人首先会想到IBM。IBM是Hadoop项目的主要参与者之一,Forrester称IBM已有100多个Hadoop部署,它的很多客户都有PB级的数据。IBM在网格计算、全球数据中心和企业大数据项目实施等众多领域有着丰富的经验。“IBM计划继续整合SPSS分析、高性能计算、BI工具、数据管理和建模、应对高性能计算的工作负载管理等众多技术。”
Intel
和AWS类似,英特尔不断改进和优化Hadoop使其运行在自己的硬件上,具体来说,就是让Hadoop运行在其至强芯片上,帮助用户打破Hadoop系统的一些限制,使软件和硬件结合的更好,英特尔的Hadoop发行版在上述方面做得比较好。Forrester指出英特尔在最近才推出这个产品,所以公司在未来还有很多改进的可能,英特尔和微软都被认为是Hadoop市场上的潜力股。
MapR Technologies
MapR的Hadoop发行版目前为止也许是最好的了,不过很多人可能都没有听说过。Forrester对Hadoop用户的调查显示,MapR的评级最高,其发行版在架构和数据处理能力上都获得了最高分。MapR已将一套特殊功能融入其Hadoop发行版中。例如网络文件系统(NFS)、灾难恢复以及高可用性功能。Forrester说MapR在Hadoop市场上没有Cloudera和Hortonworks那样的知名度,MapR要成为一个真正的大企业,还需要加强伙伴关系和市场营销。
Microsoft
微软在开源软件问题上一直很低调,但在大数据形势下,它不得不考虑让Windows也兼容Hadoop,它还积极投入到开源项目中,以更广泛地推动Hadoop生态圈的发展。我们可以在微软的公共云Windows Azure HDInsight产品中看到其成果。微软的Hadoop服务基于Hortonworks的发行版,而且是为Azure量身定制的。
微软也有一些其他的项目,包括名为Polybase的项目,让Hadoop查询实现了SQLServer查询的一些功能。Forrester说:“微软在数据库、数据仓库、云、OLAP、BI、电子表格(包括PowerPivot)、协作和开发工具市场上有很大优势,而且微软拥有庞大的用户群,但要在Hadoop这个领域成为行业领导者还有很远的路要走。”
Pivotal Software
EMC和Vmware部分大数据业务分拆组合产生了Pivotal。Pivotal一直努力构建一个性能优越的Hadoop发行版,为此,Pivotal在开源Hadoop的基础上又添加了一些新的工具,包括一个名为HAWQ的SQL引擎以及一个专门解决大数据问题的Hadoop应用。Forrester称Pivotal Hadoop平台的优势在于它整合了Pivotal、EMC、Vmware的众多技术,Pivotal的真正优势实际上等于EMC和Vmware两大公司为其撑腰。到目前为止,Pivotal的用户还不到100个,而且大多是中小型客户。
Teradata
对于Teradata来说,Hadoop既是一种威胁也是一种机遇。数据管理,特别是关于SQL和关系数据库这一领域是Teradata的专长。所以像Hadoop这样的NoSQL平台崛起可能会威胁到Teradata。相反,Teradata接受了Hadoop,通过与Hortonworks合作,Teradata在Hadoop平台集成了SQL技术,这使Teradata的客户可以在Hadoop平台上方便地使用存储在Teradata数据仓库中的数据。
AMPLab
通过将数据转变为信息,我们才可以理解世界,而这也正是AMPLab所做的。AMPLab致力于机器学习、数据挖掘、数据库、信息检索、自然语言处理和语音识别等多个领域,努力改进对信息包括不透明数据集内信息的甄别技术。除了Spark,开源分布式SQL查询引擎Shark也源于AMPLab,Shark具有极高的查询效率,具有良好的兼容性和可扩展性。近几年的发展使计算机科学进入到全新的时代,而AMPLab为我们设想一个运用大数据、云计算、通信等各种资源和技术灵活解决难题的方案,以应对越来越复杂的各种难题。
前言:
MYSQL 应该是最流行了 WEB 后端数据库。虽然 NOSQL 最近越来越多的被提到,但是相信大部分架构师还是会选择 MYSQL 来做数据存储。本文作者总结梳理MySQL性能调优的15个重要变量,又不足需要补充的还望大佬指出。
1.DEFAULT_STORAGE_ENGINE
如果你已经在用MySQL 5.6或者5.7,并且你的数据表都是InnoDB,那么表示你已经设置好了。如果没有,确保把你的表转换为InnoDB并且设置default_storage_engine为InnoDB。
为什么?简而言之,因为InnoDB是MySQL(包括Percona Server和MariaDB)最好的存储引擎 – 它支持事务,高并发,有着非常好的性能表现(当配置正确时)。这里有详细的版本介绍为什么
2.INNODB_BUFFER_POOL_SIZE
这个是InnoDB最重要变量。实际上,如果你的主要存储引擎是InnoDB,那么对于你,这个变量对于MySQL是最重要的。
基本上,innodb_buffer_pool_size指定了MySQL应该分配给InnoDB缓冲池多少内存,InnoDB缓冲池用来存储缓存的数据,二级索引,脏数据(已经被更改但没有刷新到硬盘的数据)以及各种内部结构如自适应哈希索引。
根据经验,在一个独立的MySQL服务器应该分配给MySQL整个机器总内存的80%。如果你的MySQL运行在一个共享服务器,或者你想知道InnoDB缓冲池大小是否正确设置,详细请看这里。
3.INNODB_LOG_FILE_SIZE
InnoDB重做日志文件的设置在MySQL社区也叫做事务日志。直到MySQL 5.6.8事务日志默认值innodb_log_file_size=5M是唯一最大的InnoDB性能杀手。从MySQL 5.6.8开始,默认值提升到48M,但对于许多稍繁忙的系统,还远远要低。
根据经验,你应该设置的日志大小能在你服务器繁忙时能存储1-2小时的写入量。如果不想这么麻烦,那么设置1-2G的大小会让你的性能有一个不错的表现。这个变量也相当重要,更详细的介绍请看这里。
当然,如果你有大量的大事务更改,那么,更改比默认innodb日志缓冲大小更大的值会对你的性能有一定的提高,但是你使用的是autocommit,或者你的事务更改小于几k,那还是保持默认的值吧。
4.INNODB_FLUSH_LOG_AT_TRX_COMMIT
默认下,innodb_flush_log_at_trx_commit设置为1表示InnoDB在每次事务提交后立即刷新同步数据到硬盘。如果你使用autocommit,那么你的每一个INSERT, UPDATE或DELETE语句都是一个事务提交。
同步是一个昂贵的操作(特别是当你没有写回缓存时),因为它涉及对硬盘的实际同步物理写入。所以如果可能,并不建议使用默认值。
两个可选的值是0和2:
* 0表示刷新到硬盘,但不同步(提交事务时没有实际的IO操作)
* 2表示不刷新和不同步(也没有实际的IO操作)
所以你如果设置它为0或2,则同步操作每秒执行一次。所以明显的缺点是你可能会丢失上一秒的提交数据。具体来说,你的事务已经提交了,但服务器马上断电了,那么你的提交相当于没有发生过。
显示的,对于金融机构,如银行,这是无法忍受的。不过对于大多数网站,可以设置为innodb_flush_log_at_trx_commit=0|2,即使服务器最终崩溃也没有什么大问题。毕竟,仅仅在几年前有许多网站还是用MyISAM,当崩溃时会丢失30s的数据(更不要提那令人抓狂的慢修复进程)。
那么,0和2之间的实际区别是什么?性能明显的差异是可以忽略不计,因为刷新到操作系统缓存的操作是非常快的。所以很明显应该设置为0,万一MySQL崩溃(不是整个机器),你不会丢失任何数据,因为数据已经在OS缓存,最终还是会同步到硬盘的。
5.SYNC_BINLOG
已经有大量的文档写到sync_binlog,以及它和innodb_flush_log_at_trx_commit的关系,下面我们来简单的介绍下:
a) 如果你的服务器没有设置从服务器,而且你不做备份,那么设置sync_binlog=0将对性能有好处。
b) 如果你有从服务器并且做备份,但你不介意当主服务器崩溃时在二进制日志丢失一些事件,那么为了更好的性能还是设置为sync_binlog=0.
c) 如果你有从服务器并且备份,你非常在意从服务器的一致性,以及能及时恢复到一个时间点(通过使用最新的一致性备份和二进制日志将数据库恢复到特定时间点的能力),那么你应该设置innodb_flush_log_at_trx_commit=1,并且需要认真考虑使用sync_binlog=1。
问题是sync_binlog=1代价比较高 – 现在每个事务也要同步一次到硬盘。你可能会想为什么不把两次同步合并成一次,想法正确 – 新版本的MySQL(5.6和5.7,MariaDB和Percona Server)已经能合并提交,那么在这种情况下sync_binlog=1的操作也不是这么昂贵了,但在旧的mysql版本中仍然会对性能有很大影响。
6.INNODB_FLUSH_METHOD
将innodb_flush_method设置为O_DIRECT以避免双重缓冲.唯一一种情况你不应该使用O_DIRECT是当你操作系统不支持时。但如果你运行的是Linux,使用O_DIRECT来激活直接IO。
不用直接IO,双重缓冲将会发生,因为所有的数据库更改首先会写入到OS缓存然后才同步到硬盘 – 所以InnoDB缓冲池和OS缓存会同时持有一份相同的数据。特别是如果你的缓冲池限制为总内存的50%,那意味着在写密集的环境中你可能会浪费高达50%的内存。如果没有限制为50%,服务器可能由于OS缓存的高压力会使用到swap。
简单地说,设置为innodb_flush_method=O_DIRECT。
7.INNODB_BUFFER_POOL_INSTANCES
MySQL 5.5引入了缓冲实例作为减小内部锁争用来提高MySQL吞吐量的手段。
在5.5版本这个对提升吞吐量帮助很小,然后在MySQL 5.6版本这个提升就非常大了,所以在MySQL5.5中你可能会保守地设置innodb_buffer_pool_instances=4,在MySQL 5.6和5.7中你可以设置为8-16个缓冲池实例。
你设置后观察会觉得性能提高不大,但在大多数高负载情况下,它应该会有不错的表现。
对了,不要指望这个设置能减少你单个查询的响应时间。这个是在高并发负载的服务器上才看得出区别。比如多个线程同时做许多事情。
8.INNODB_THREAD_CONCURRENCY
InnoDB有一种方法来控制并行执行的线程数 – 我们称为并发控制机制。大部分是由innodb_thread_concurrency值来控制的。如果设置为0,并发控制就关闭了,因此InnoDB会立即处理所有进来的请求(尽可能多的)。
在你有32CPU核心且只有4个请求时会没什么问题。不过想像下你只有4CPU核心和32个请求时 – 如果你让32个请求同时处理,你这个自找麻烦。因为这些32个请求只有4 CPU核心,显然地会比平常慢至少8倍(实际上是大于8倍),而然这些请求每个都有自己的外部和内部锁,这有很大可能堆积请求。
下面介绍如何更改这个变量,在mysql命令行提示符执行:
对于大多数工作负载和服务器,设置为8是一个好开端,然后你可以根据服务器达到了这个限制而资源使用率利用不足时逐渐增加。可以通过show engine innodb status\G来查看目前查询处理情况,查找类似如下行:
9.SKIP_NAME_RESOLVE
这一项不得不提及,因为仍然有很多人没有添加这一项。你应该添加skip_name_resolve来避免连接时DNS解析。
大多数情况下你更改这个会没有什么感觉,因为大多数情况下DNS服务器解析会非常快。不过当DNS服务器失败时,它会出现在你服务器上出现“unauthenticated connections” ,而就是为什么所有的请求都突然开始慢下来了。
所以不要等到这种事情发生才更改。现在添加这个变量并且避免基于主机名的授权。
10.INNODB_IO_CAPACITY, INNODB_IO_CAPACITY_MAX
* innodb_io_capacity:用来当刷新脏数据时,控制MySQL每秒执行的写IO量。
* innodb_io_capacity_max: 在压力下,控制当刷新脏数据时MySQL每秒执行的写IO量
首先,这与读取无关 – SELECT查询执行的操作。对于读操作,MySQL会尽最大可能处理并返回结果。至于写操作,MySQL在后台会循环刷新,在每一个循环会检查有多少数据需要刷新,并且不会用超过innodb_io_capacity指定的数来做刷新操作。这也包括更改缓冲区合并(在它们刷新到磁盘之前,更改缓冲区是辅助脏页存储的关键)。
第二,我需要解释一下什么叫“在压力下”,MySQL中称为”紧急情况”,是当MySQL在后台刷新时,它需要刷新一些数据为了让新的写操作进来。然后,MySQL会用到innodb_io_capacity_max。
那么,应该设置innodb_io_capacity和innodb_io_capacity_max为什么呢?
最好的方法是测量你的存储设置的随机写吞吐量,然后给innodb_io_capacity_max设置为你的设备能达到的最大IOPS。innodb_io_capacity就设置为它的50-75%,特别是你的系统主要是写操作时。
通常你可以预测你的系统的IOPS是多少。例如由8 15k硬盘组成的RAID10能做大约每秒1000随机写操作,所以你可以设置innodb_io_capacity=600和innodb_io_capacity_max=1000。许多廉价企业SSD可以做4,000-10,000 IOPS等。
这个值设置得不完美问题不大。但是,要注意默认的200和400会限制你的写吞吐量,因此你可能偶尔会捕捉到刷新进程。如果出现这种情况,可能是已经达到你硬盘的写IO吞吐量,或者这个值设置得太小限制了吞吐量。
11.INNODB_STATS_ON_METADATA
如果你跑的是MySQL 5.6或5.7,你不需要更改innodb_stats_on_metadata的默认值,因为它已经设置正确了。
不过在MySQL 5.5或5.1,强烈建议关闭这个变量 – 如果是开启,像命令show table status会立即查询INFORMATION_SCHEMA而不是等几秒再执行,这会使用到额外的IO操作。
从5.1.32版本开始,这个是动态变量,意味着你不需要重启MySQL服务器来关闭它。
12.INNODB_BUFFER_POOL_DUMP_AT_SHUTDOWN INNODB_BUFFER_POOL_LOAD_AT_STARTUP
innodb_buffer_pool_dump_at_shutdown和innodb_buffer_pool_load_at_startup这两个变量与性能无关,不过如果你偶尔重启mysql服务器(如生效配置),那么就有关。当两个都激活时,MySQL缓冲池的内容(更具体地说,是缓存页)在停止MySQL时存储到一个文件。当你下次启动MySQL时,它会在后台启动一个线程来加载缓冲池的内容以提高预热速度到3-5倍。
两件事:
第一,它实际上没有在关闭时复制缓冲池内容到文件,仅仅是复制表空间ID和页面ID – 足够的信息来定位硬盘上的页面了。然后它就能以大量的顺序读非常快速的加载那些页面,而不是需要成千上万的小随机读。
第二,启动时是在后台加载内容,因为MySQL不需要等到缓冲池内容加载完成再开始接受请求(所以看起来不会有什么影响)。
从MySQL 5.7.7开始,默认只有25%的缓冲池页面在mysql关闭时存储到文件,但是你可以控制这个值 – 使用innodb_buffer_pool_dump_pct,建议75-100。
这个特性从MySQL 5.6才开始支持。
13.INNODB_ADAPTIVE_HASH_INDEX_PARTS
如果你运行着一个大量SELECT查询的MySQL服务器(并且已经尽可能优化),那么自适应哈希索引将下你的下一个瓶颈。自适应哈希索引是InnoDB内部维护的动态索引,可以提高最常用的查询模式的性能。这个特性可以重启服务器关闭,不过默认下在mysql的所有版本开启。
这个技术非常复杂,在大多数情况下它会对大多数类型的查询直到加速的作用。不过,当你有太多的查询往数据库,在某一个点上它会花过多的时间等待AHI锁和闩锁。
如果你的是MySQL 5.7,没有这个问题 – innodb_adaptive_hash_index_parts默认设置为8,所以自适应哈希索引被切割为8个分区,因为不存在全局互斥。
不过在mysql 5.7前的版本,没有AHI分区数量的控制。换句话说,有一个全局互斥锁来保护AHI,可能导致你的select查询经常撞墙。
所以如果你运行的是5.1或5.6,并且有大量的select查询,最简单的方案就是切换成同一版本的Percona Server来激活AHI分区。
14.QUERY_CACHE_TYPE
如果人认为查询缓存效果很好,肯定应该使用它。好吧,有时候是有用的。不过这个只在你在低负载时有用,特别是在低负载下大多数是读取,小量写或者没有。
如果是那样的情况,设置query_cache_type=ON和query_cache_size=256M就好了。不过记住不能把256M设置更高的值了,否则会由于查询缓存失效时,导致引起严重的服务器停顿。
如果你的MySQL服务器高负载动作,建议设置query_cache_size=0和query_cache_type=OFF,并重启服务器生效。那样Mysql就会停止在所有的查询使用查询缓存互斥锁。
15.TABLE_OPEN_CACHE_INSTANCES
从MySQL 5.6.6开始,表缓存能分割到多个分区。
表缓存用来存放目前已打开表的列表,当每一个表打开或关闭互斥体就被锁定 – 即使这是一个隐式临时表。使用多个分区绝对减少了潜在的争用。
从MySQL 5.7.8开始,table_open_cache_instances=16是默认的配置。
欢迎做Java的工程师朋友们私信我资料免费获取免费的Java架构学习资料(里面有高可用、高并发、高性能及分布式、Jvm性能调优、Spring源码,MyBatis,Netty,Redis,Kafka,Mysql,Zookeeper,Tomcat,Docker,Dubbo,Nginx等多个知识点的架构资料)
其中覆盖了互联网的方方面面,期间碰到各种产品各种场景下的各种问题,很值得大家借鉴和学习,扩展自己的技术广度和知识面。