大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
使用Facecognition与Opencv怎么实现一个人脸识别功能?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
创新互联公司-专业网站定制、快速模板网站建设、高性价比清水网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式清水网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖清水地区。费用合理售后完善,十年实体公司更值得信赖。Facecognition人脸识别原理大体可分为:
1、通过hog算子定位人脸,也可以用cnn模型,但本文没试过;
2、Dlib有专门的函数和模型,实现人脸68个特征点的定位。通过图像的几何变换(仿射、旋转、缩放),使各个特征点对齐(将眼睛、嘴等部位移到相同位置);
3、训练一个神经网络,将输入的脸部图像生成为128维的预测值。训练的大致过程为:将同一人的两张不同照片和另一人的照片一起喂入神经网络,不断迭代训练,使同一人的两张照片编码后的预测值接近,不同人的照片预测值拉远;
4、将陌生人脸预测为128维的向量,与人脸库中的数据进行比对,找出阈值范围内欧氏距离最小的人脸,完成识别。
PyCharm: PyCharm Community Edition 2020.3.2 x64
Python:Python 3.8.7
Opencv:opencv-python 4.5.1.48
Facecognition:1.3.0
Dlb:dlb 0.5.0
本文不做PyCharm和Python安装,这个自己搞不定,就别玩了~
pip install opencv-python pip install face-recognition pip install face-recognition-models pip install dlb
通过opencv、facecogniton定位人脸并保存人脸头像,生成人脸数据集,代码如下:
import face_recognition import cv2 import os def builddataset(): Video_face = cv2.VideoCapture(0) num=0 while True: flag, frame = Video_face.read(); if flag: cv2.imshow('frame', frame) cv2.waitKey(2) else: break face_locations = face_recognition.face_locations(frame) if face_locations: x_face = frame[face_locations[0][0]-50:face_locations[0][2]+50, face_locations[0][3]-50:face_locations[0][1]+50]; #x_face = cv2.resize(x_face, dsize=(200, 200)); bo_photo = cv2.imwrite("%s\%d.jpg" % ("traindataset/ylb", num), x_face); print("保存成功:%d" % num) num=num+1 else: print("****未检查到头像****") Video_face.release() if __name__ == '__main__': builddataset(); pass
通过数据集进行训练,得到人脸识别码,以numpy数据形式保存(人脸识别码)模型
def __init__(self, trainpath,labelname,modelpath, predictpath): self.trainpath = trainpath self.labelname = labelname self.modelpath = modelpath self.predictpath = predictpath # no doc def train(self, trainpath, modelpath): encodings = [] dirs = os.listdir(trainpath) for k,dir in enumerate(dirs): filelist = os.listdir(trainpath+'/'+dir) for i in range(0, len(filelist)): imgname = trainpath + '/'+dir+'/%d.jpg' % (i) picture_of_me = face_recognition.load_image_file(imgname) face_locations = face_recognition.face_locations(picture_of_me) if face_locations: print(face_locations) my_face_encoding = face_recognition.face_encodings(picture_of_me, face_locations)[0] encodings.append(my_face_encoding) if encodings: numpy.save(modelpath, encodings) print(len(encodings)) print("model train is sucess") else: print("model train is failed")
通过opencv启动摄像头并获取视频,加载训练好模型完成识别及跟踪,为避免视频卡顿设置了隔帧处理。
def predicvideo(self,names,model): Video_face = cv2.VideoCapture(0) num=0 recongnition=[] unknown_face_locations=[] while True: flag, frame = Video_face.read(); frame = cv2.flip(frame, 1) # 镜像操作 num=num+1 if flag: self.predictpeople(num, recongnition,unknown_face_locations,frame, names, encodings) else: break Video_face.release() def predictpeople(self, condition,recongnition,unknown_face_locations,unknown_picture,labels,encodings): if condition%5==0: face_locations = face_recognition.face_locations(unknown_picture) unknown_face_encoding = face_recognition.face_encodings(unknown_picture,face_locations) unknown_face_locations.clear() recongnition.clear() for index, value in enumerate(unknown_face_encoding): unknown_face_locations.append(face_locations[index]) results = face_recognition.compare_faces(encodings, value, 0.4) splitresult = numpy.array_split(results, len(labels)) trueNum=[] a1 = '' for item in splitresult: number = numpy.sum(item) trueNum.append(number) if numpy.max(trueNum) > 0: id = numpy.argsort(trueNum)[-1] a1 = labels[id] cv2.rectangle(unknown_picture, pt1=(unknown_face_locations[index][1], unknown_face_locations[index][0]), pt2=(unknown_face_locations[index][3], unknown_face_locations[index][2]), color=[0, 0, 255], thickness=2); cv2.putText(unknown_picture, a1, (unknown_face_locations[index][1], unknown_face_locations[index][0]), cv2.FONT_ITALIC, 1, [0, 0, 255], 2); else: a1 = "unkown" cv2.rectangle(unknown_picture, pt1=(unknown_face_locations[index][1], unknown_face_locations[index][0]), pt2=(unknown_face_locations[index][3], unknown_face_locations[index][2]), color=[0, 0, 255], thickness=2); cv2.putText(unknown_picture, a1, (unknown_face_locations[index][1], unknown_face_locations[index][0]), cv2.FONT_ITALIC, 1, [0, 0, 255], 2); recongnition.append(a1) else: self.drawRect(unknown_picture,recongnition,unknown_face_locations) cv2.imshow('face', unknown_picture) cv2.waitKey(1)
关于使用Facecognition与Opencv怎么实现一个人脸识别功能问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联行业资讯频道了解更多相关知识。