大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章主要为大家展示了“ numpy random模块有哪些”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“ numpy random模块有哪些”这篇文章吧。
站在用户的角度思考问题,与客户深入沟通,找到北林网站设计与北林网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:成都网站建设、网站建设、企业官网、英文网站、手机端网站、网站推广、国际域名空间、雅安服务器托管、企业邮箱。业务覆盖北林地区。
一下方法都要加np.random.前缀
1.简单随机数据
name | describe |
---|---|
rand(d0, d1, …, dn) | Random values in a given shape. |
randn(d0, d1, …, dn) | Return a sample (or samples) from the “standard normal” distribution. |
randint(low[, high, size, dtype]) | Return random integers from low (inclusive) to high (exclusive). |
random_integers(low[, high, size]) | Random integers of type np.int between low and high, inclusive. |
random_sample([size]) | Return random floats in the half-open interval [0.0, 1.0). |
random([size]) | Return random floats in the half-open interval [0.0, 1.0). |
ranf([size]) | Return random floats in the half-open interval [0.0, 1.0). |
sample([size]) | Return random floats in the half-open interval [0.0, 1.0). |
choice(a[, size, replace, p]) | Generates a random sample from a given 1-D array |
bytes(length) | Return random bytes. |
2.生成随机分布
name | describe |
---|---|
beta(a, b[, size]) | Draw samples from a Beta distribution. |
binomial(n, p[, size]) | Draw samples from a binomial distribution. |
chisquare(df[, size]) | Draw samples from a chi-square distribution. |
dirichlet(alpha[, size]) | Draw samples from the Dirichlet distribution. |
exponential([scale, size]) | Draw samples from an exponential distribution. |
f(dfnum, dfden[, size]) | Draw samples from an F distribution. |
gamma(shape[, scale, size]) | Draw samples from a Gamma distribution. |
geometric(p[, size]) | Draw samples from the geometric distribution. |
gumbel([loc, scale, size]) | Draw samples from a Gumbel distribution. |
hypergeometric(ngood, nbad, nsample[, size]) | Draw samples from a Hypergeometric distribution. |
laplace([loc, scale, size]) | Draw samples from the Laplace or double exponential distribution with specified logistic([loc, scale, size]) Draw samples from a logistic distribution. |
lognormal([mean, sigma, size]) | Draw samples from a log-normal distribution. |
logseries(p[, size]) | Draw samples from a logarithmic series distribution. |
multinomial(n, pvals[, size]) | Draw samples from a multinomial distribution. |
multivariate_normal(mean, cov[, size]) | Draw random samples from a multivariate normal distribution. |
negative_binomial(n, p[, size]) | Draw samples from a negative binomial distribution. |
noncentral_chisquare(df, nonc[, size]) | Draw samples from a noncentral chi-square distribution. |
noncentral_f(dfnum, dfden, nonc[, size]) | Draw samples from the noncentral F distribution. |
normal([loc, scale, size]) | Draw random samples from a normal (Gaussian) distribution. |
pareto(a[, size]) | Draw samples from a Pareto II or Lomax distribution with specified shape. |
poisson([lam, size]) | Draw samples from a Poisson distribution. |
power(a[, size]) | Draws samples in [0, 1] from a power distribution with positive exponent a - 1. |
rayleigh([scale, size]) | Draw samples from a Rayleigh distribution. |
standard_cauchy([size]) | Draw samples from a standard Cauchy distribution with mode = 0. |
standard_exponential([size]) | Draw samples from the standard exponential distribution. |
standard_gamma(shape[, size]) | Draw samples from a standard Gamma distribution. |
standard_normal([size]) | Draw samples from a standard Normal distribution (mean=0, stdev=1). |
standard_t(df[, size]) | Draw samples from a standard Student’s t distribution with df degrees of freedom. |
triangular(left, mode, right[, size]) | Draw samples from the triangular distribution over the interval [left, right]. |
uniform([low, high, size]) | Draw samples from a uniform distribution. |
vonmises(mu, kappa[, size]) | Draw samples from a von Mises distribution. |
wald(mean, scale[, size]) | Draw samples from a Wald, or inverse Gaussian, distribution. |
weibull(a[, size]) | Draw samples from a Weibull distribution. |
zipf(a[, size]) | Draw samples from a Zipf distribution. |
3.重排
name | describe |
---|---|
shuffle(x) | Modify a sequence in-place by shuffling its contents. |
permutation(x) | Randomly permute a sequence, or return a permuted range. |
以上是“ numpy random模块有哪些”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!