大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
使用Python怎么实现一个分割训练集和测试集?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
成都创新互联公司是一家专业提供进贤企业网站建设,专注与网站制作、成都网站设计、HTML5、小程序制作等业务。10年已为进贤众多企业、政府机构等服务。创新互联专业网站设计公司优惠进行中。数据集介绍
使用数据集Wine,来自UCI 。包括178条样本,13个特征。
import pandas as pd import numpy as np df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline']
分割训练集和测试集
随机分割
分为训练集和测试集
方法:使用scikit-learn中model_selection子模块的train_test_split函数
from sklearn.model_selection import train_test_split X, y = df_wine.ix[:, 1:].values, df_wine.ix[:, 0].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)#随机选择25%作为测试集,剩余作为训练集
关于使用Python怎么实现一个分割训练集和测试集问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联成都网站设计公司行业资讯频道了解更多相关知识。
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。