大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章运用简单易懂的例子给大家介绍使用Python+OpenCV如何实现图像二值化,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。
成都创新互联是一家专业提供辽阳企业网站建设,专注与网站设计制作、成都网站建设、H5网站设计、小程序制作等业务。10年已为辽阳众多企业、政府机构等服务。创新互联专业网站建设公司优惠进行中。简介:图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程。
普通图像二值化
代码如下:
import cv2 as cv import numpy as np #全局阈值 def threshold_demo(image): gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) #把输入图像灰度化 #直接阈值化是对输入的单通道矩阵逐像素进行阈值分割。 ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_TRIANGLE) print("threshold value %s"%ret) cv.namedWindow("binary0", cv.WINDOW_NORMAL) cv.imshow("binary0", binary) #局部阈值 def local_threshold(image): gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) #把输入图像灰度化 #自适应阈值化能够根据图像不同区域亮度分布,改变阈值 binary = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C,cv.THRESH_BINARY, 25, 10) cv.namedWindow("binary1", cv.WINDOW_NORMAL) cv.imshow("binary1", binary) #用户自己计算阈值 def custom_threshold(image): gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) #把输入图像灰度化 h, w =gray.shape[:2] m = np.reshape(gray, [1,w*h]) mean = m.sum()/(w*h) print("mean:",mean) ret, binary = cv.threshold(gray, mean, 255, cv.THRESH_BINARY) cv.namedWindow("binary2", cv.WINDOW_NORMAL) cv.imshow("binary2", binary) src = cv.imread('E:/imageload/kobe.jpg') cv.namedWindow('input_image', cv.WINDOW_NORMAL) #设置为WINDOW_NORMAL可以任意缩放 cv.imshow('input_image', src) threshold_demo(src) local_threshold(src) custom_threshold(src) cv.waitKey(0) cv.destroyAllWindows()