大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章主要介绍了python中MNIST手写识别数据调用API的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
创新互联建站-专业网站定制、快速模板网站建设、高性价比新丰网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式新丰网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖新丰地区。费用合理售后完善,十年实体公司更值得信赖。MNIST数据集比较小,一般入门机器学习都会采用这个数据集来训练
下载地址:yann.lecun.com/exdb/mnist/
有4个有用的文件:
train-images-idx3-ubyte: training set images
train-labels-idx1-ubyte: training set labels
t10k-images-idx3-ubyte: test set images
t10k-labels-idx1-ubyte: test set labels
The training set contains 60000 examples, and the test set 10000 examples. 数据集存储是用binary file存储的,黑白图片。
下面给出load数据集的代码:
import os import struct import numpy as np import matplotlib.pyplot as plt def load_mnist(): ''' Load mnist data http://yann.lecun.com/exdb/mnist/ 60000 training examples 10000 test sets Arguments: kind: 'train' or 'test', string charater input with a default value 'train' Return: xxx_images: n*m array, n is the sample count, m is the feature number which is 28*28 xxx_labels: class labels for each image, (0-9) ''' root_path = '/home/cc/deep_learning/data_sets/mnist' train_labels_path = os.path.join(root_path, 'train-labels.idx1-ubyte') train_images_path = os.path.join(root_path, 'train-images.idx3-ubyte') test_labels_path = os.path.join(root_path, 't10k-labels.idx1-ubyte') test_images_path = os.path.join(root_path, 't10k-images.idx3-ubyte') with open(train_labels_path, 'rb') as lpath: # '>' denotes bigedian # 'I' denotes unsigned char magic, n = struct.unpack('>II', lpath.read(8)) #loaded = np.fromfile(lpath, dtype = np.uint8) train_labels = np.fromfile(lpath, dtype = np.uint8).astype(np.float) with open(train_images_path, 'rb') as ipath: magic, num, rows, cols = struct.unpack('>IIII', ipath.read(16)) loaded = np.fromfile(train_images_path, dtype = np.uint8) # images start from the 16th bytes train_images = loaded[16:].reshape(len(train_labels), 784).astype(np.float) with open(test_labels_path, 'rb') as lpath: # '>' denotes bigedian # 'I' denotes unsigned char magic, n = struct.unpack('>II', lpath.read(8)) #loaded = np.fromfile(lpath, dtype = np.uint8) test_labels = np.fromfile(lpath, dtype = np.uint8).astype(np.float) with open(test_images_path, 'rb') as ipath: magic, num, rows, cols = struct.unpack('>IIII', ipath.read(16)) loaded = np.fromfile(test_images_path, dtype = np.uint8) # images start from the 16th bytes test_images = loaded[16:].reshape(len(test_labels), 784) return train_images, train_labels, test_images, test_labels
再看看图片集是什么样的:
def test_mnist_data(): ''' Just to check the data Argument: none Return: none ''' train_images, train_labels, test_images, test_labels = load_mnist() fig, ax = plt.subplots(nrows = 2, ncols = 5, sharex = True, sharey = True) ax =ax.flatten() for i in range(10): img = train_images[i][:].reshape(28, 28) ax[i].imshow(img, cmap = 'Greys', interpolation = 'nearest') print('corresponding labels = %d' %train_labels[i]) if __name__ == '__main__': test_mnist_data()
跑出的结果如下:
感谢你能够认真阅读完这篇文章,希望小编分享的“python中MNIST手写识别数据调用API的示例分析”这篇文章对大家有帮助,同时也希望大家多多支持创新互联,关注创新互联行业资讯频道,更多相关知识等着你来学习!