大橙子网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

python实现拉普拉斯特征图降维示例-创新互联

这种方法假设样本点在光滑的流形上,这一方法的计算数据的低维表达,局部近邻信息被最优的保存。以这种方式,可以得到一个能反映流形的几何结构的解。

让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名注册、虚拟空间、营销软件、网站建设、大邑县网站维护、网站推广。

步骤一:构建一个图G=(V,E),其中V={vi,i=1,2,3…n}是顶点的集合,E={eij}是连接顶点的vi和vj边,图的每一个节点vi与样本集X中的一个点xi相关。如果xi,xj相距较近,我们就连接vi,vj。也就是说在各自节点插入一个边eij,如果Xj在xi的k领域中,k是定义参数。

步骤二:每个边都与一个权值Wij相对应,没有连接点之间的权值为0,连接点之间的权值:

python实现拉普拉斯特征图降维示例

步骤三:python实现拉普拉斯特征图降维示例 ,实现广义本征分解:

python实现拉普拉斯特征图降维示例

使python实现拉普拉斯特征图降维示例 是最小的m+1个本征值。忽略与 python实现拉普拉斯特征图降维示例 =0相关的本征向量,选取另外m个本征向量即为降维后的向量。

1、python实现拉普拉斯降维

def laplaEigen(dataMat,k,t): 
 m,n=shape(dataMat) 
 W=mat(zeros([m,m])) 
 D=mat(zeros([m,m])) 
 for i in range(m): 
 k_index=knn(dataMat[i,:],dataMat,k) 
 for j in range(k): 
  sqDiffVector = dataMat[i,:]-dataMat[k_index[j],:] 
  sqDiffVector=array(sqDiffVector)**2 
  sqDistances = sqDiffVector.sum() 
  W[i,k_index[j]]=math.exp(-sqDistances/t) 
  D[i,i]+=W[i,k_index[j]] 
 L=D-W 
 Dinv=np.linalg.inv(D) 
 X=np.dot(D.I,L) 
 lamda,f=np.linalg.eig(X) 
return lamda,f 
def knn(inX, dataSet, k): 
 dataSetSize = dataSet.shape[0] 
 diffMat = tile(inX, (dataSetSize,1)) - dataSet 
 sqDiffMat = array(diffMat)**2 
 sqDistances = sqDiffMat.sum(axis=1) 
 distances = sqDistances**0.5 
 sortedDistIndicies = distances.argsort() 
return sortedDistIndicies[0:k] 
dataMat, color = make_swiss_roll(n_samples=2000) 
lamda,f=laplaEigen(dataMat,11,5.0) 
fm,fn =shape(f) 
print 'fm,fn:',fm,fn 
lamdaIndicies = argsort(lamda) 
first=0 
second=0 
print lamdaIndicies[0], lamdaIndicies[1] 
for i in range(fm): 
 if lamda[lamdaIndicies[i]].real>1e-5: 
 print lamda[lamdaIndicies[i]] 
 first=lamdaIndicies[i] 
 second=lamdaIndicies[i+1] 
 break 
print first, second 
redEigVects = f[:,lamdaIndicies] 
fig=plt.figure('origin') 
ax1 = fig.add_subplot(111, projection='3d') 
ax1.scatter(dataMat[:, 0], dataMat[:, 1], dataMat[:, 2], c=color,cmap=plt.cm.Spectral) 
fig=plt.figure('lowdata') 
ax2 = fig.add_subplot(111) 
ax2.scatter(f[:,first], f[:,second], c=color, cmap=plt.cm.Spectral) 
plt.show() 

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


本文题目:python实现拉普拉斯特征图降维示例-创新互联
新闻来源:http://dzwzjz.com/article/csesjd.html
在线咨询
服务热线
服务热线:028-86922220
TOP