大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
本篇文章给大家分享的是有关使用python怎么给证件照换底色,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。
创新互联服务项目包括平房网站建设、平房网站制作、平房网页制作以及平房网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,平房网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到平房省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!imread():读取图片;
imshow():展示图片;
waitkey():设置窗口等待,如果不设置,窗口会一闪而过;
import cv2 import numpy as np # 读取照片 img=cv2.imread('girl.jpg') # 显示图像 cv2.imshow('img',img) # 窗口等待的命令,0表示无限等待 cv2.waitKey(0)
效果如下:
resize():图片缩放,其中fx和fy表示缩放比例,0.5表示缩放为以前的 一半。
import cv2 import numpy as np # 读取照片 img=cv2.imread('girl.jpg') # 图像缩放 img = cv2.resize(img,None,fx=0.5,fy=0.5) rows,cols,channels = img.shape print(rows,cols,channels) # 显示图像 cv2.imshow('img',img) # 窗口等待的命令,0表示无限等待 cv2.waitKey(0)
三色图片有RGB三个颜色通道,无法进行腐蚀和膨胀的操作。这个就需要我们将彩色图片转换为hsv灰度图像后,再完成腐蚀和膨胀的操作。
cv2.cvtColor(img,cv2.COLOR_BGR2HSV)可以将彩色图片转化为hsv灰度图片。
import cv2 import numpy as np # 读取照片 img=cv2.imread('girl.jpg') # 图像缩放 img = cv2.resize(img,None,fx=0.5,fy=0.5) rows,cols,channels = img.shape print(rows,cols,channels) cv2.imshow('img',img) # 图片转换为二值化图 hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV) # 显示图像 cv2.imshow('hsv',hsv) # 窗口等待的命令,0表示无限等待 cv2.waitKey(0)
5.将图片进行二值化处理
二值化处理是为了将图片转换为黑白图片。二值化类似于1表示男、2表示女,对于图像的处理我们也需要自定义一个最小值和较大值,这里分别用lower_blue和upper_blue表示
lower_blue = np.array([90,70,70])
upper_blue = np.array([110,255,255])
inRange(hsv, lower_blue, upper_blue)将图片进行二值化操作。
import cv2 import numpy as np # 读取照片 img=cv2.imread('girl.jpg') # 图像缩放 img = cv2.resize(img,None,fx=0.5,fy=0.5) rows,cols,channels = img.shape print(rows,cols,channels) cv2.imshow('img',img) # 图片转换为灰度图 hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV) cv2.imshow('hsv',hsv) # 图片的二值化处理 lower_blue = np.array([90,70,70]) upper_blue = np.array([110,255,255]) mask = cv2.inRange(hsv, lower_blue, upper_blue) # 显示图像 cv2.imshow('mask',mask) # 窗口等待的命令,0表示无限等待 cv2.waitKey(0)
上面的图象进行二值化后,出现了一些噪声,我们可以采用腐蚀或膨胀进行图片的处理,观察哪种的处理效果好一些。
erode(mask,None,iterations=1)进行腐蚀操作。
dilate(erode,None,iterations=1)进行膨胀操作。
import cv2 import numpy as np # 读取照片 img=cv2.imread('girl.jpg') # 图像缩放 img = cv2.resize(img,None,fx=0.5,fy=0.5) rows,cols,channels = img.shape print(rows,cols,channels) cv2.imshow('img',img) # 图片转换为灰度图 hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV) cv2.imshow('hsv',hsv) # 图片的二值化处理 lower_blue=np.array([90,70,70]) upper_blue=np.array([110,255,255]) mask = cv2.inRange(hsv, lower_blue, upper_blue) #腐蚀膨胀 erode=cv2.erode(mask,None,iterations=1) cv2.imshow('erode',erode) dilate=cv2.dilate(erode,None,iterations=1) cv2.imshow('dilate',dilate) # 窗口等待的命令,0表示无限等待 cv2.waitKey(0)
图片是由每一个像素点组成的,我们就是要找到腐蚀后得到图片的,白色底色处的像素点,然后将原图中对应位置处的像素点,替换为红色。
import cv2 import numpy as np # 读取照片 img=cv2.imread('girl.jpg') # 图像缩放 img = cv2.resize(img,None,fx=0.5,fy=0.5) rows,cols,channels = img.shape print(rows,cols,channels) cv2.imshow('img',img) # 图片转换为灰度图 hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV) cv2.imshow('hsv',hsv) # 图片的二值化处理 lower_blue=np.array([90,70,70]) upper_blue=np.array([110,255,255]) mask = cv2.inRange(hsv, lower_blue, upper_blue) #腐蚀膨胀 erode=cv2.erode(mask,None,iterations=1) cv2.imshow('erode',erode) dilate=cv2.dilate(erode,None,iterations=1) cv2.imshow('dilate',dilate) #遍历替换 for i in range(rows): for j in range(cols): if erode[i,j]==255: # 像素点为255表示的是白色,我们就是要将白色处的像素点,替换为红色 img[i,j]=(0,0,255) # 此处替换颜色,为BGR通道,不是RGB通道 cv2.imshow('res',img) # 窗口等待的命令,0表示无限等待 cv2.waitKey(0)
以上就是使用python怎么给证件照换底色,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注创新互联行业资讯频道。