大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
开APP
成都创新互联是网站建设专家,致力于互联网品牌建设与网络营销,专业领域包括成都网站设计、成都网站制作、电商网站制作开发、小程序开发、微信营销、系统平台开发,与其他网站设计及系统开发公司不同,我们的整合解决方案结合了恒基网络品牌建设经验和互联网整合营销的理念,并将策略和执行紧密结合,且不断评估并优化我们的方案,为客户提供全方位的互联网品牌整合方案!
Mysql数据库高CPU问题定位和优化 原创
2020-05-30 19:33:37
5点赞
yw804909465
码龄11年
关注
本课程的主旨及目标
•导致mysql数据库CPU高的常见原因
•常见定位问题的方法
•一般定位步骤
•数据库注意事项
导致mysql数据库CPU高的常见原因
占用CPU过高,可以做如下考虑:
1)一般来讲,排除高并发的因素,还是要找到导致你CPU过高的哪几条在执行的SQL,show processlist语句,查找负荷最重的SQL语句,优化该SQL,比如适当建立某字段的索引;
2)打开慢查询日志,将那些执行时间过长且占用资源过多的SQL拿来进行explain分析,导致CPU过高,多数是GroupBy、OrderBy排序问题所导致,然后慢慢进行优化改进。比如优化insert语句、优化group by语句、优化order by语句、优化join语句等等;
3)考虑定时优化文件及索引;
4)定期分析表,使用optimize table;
5)优化数据库对象;
6)考虑是否是锁问题;
7)调整一些MySQL Server参数,比如key_buffer_size、table_cache、innodb_buffer_pool_size、innodb_log_file_size等等;
8)如果数据量过大,可以考虑使用MySQL集群或者搭建高可用环境。
9)可能由于内存(泄露)导致数据库CPU高
10)在多用户高并发的情况下,任何系统都会hold不住的,所以,使用缓存是必须的,使用memcached或者redis缓存都可以;
11)看看tmp_table_size大小是否偏小,如果允许,适当的增大一点;
12)如果max_heap_table_size配置的过小,增大一点;
13)mysql的sql语句睡眠连接超时时间设置问题(wait_timeout)
14)使用show processlist查看mysql连接数,看看是否超过了mysql设置的连接数
一般定位步骤:
1】首先看看内存 free –m
目前看没有问题,1G的空闲
2】好了,用我们的必杀技,top看看资源消耗
可以看到服务器负载很高,mysql CPU使用已达到接近400%,基本可以看出mysql是可以进行优化的
3
请点击输入图片描述(最多18字)
经常混迹于技术社区,频繁看到这个题目,今天干脆在自己博客重复一遍解决办法:
针对mysql,sqlserver等关系型数据库单表数据过大的处理方式
如果不是阿里云的分布式数据库 DRDS 那种多机器集群方案的话: 先考虑表分区 ;然后考虑分表 ;然后考虑分库。
这个题目是我所经历过的,我做的是GPS应用,早期版本就是选用的关系型数据库Sql Server。当时我选取的方案就是第一种:表分区。 表分区的优势是,如果表结构合理,可以不涉及到程序修改。也就是说,对程序来讲依然是单表读写的效果!
所有轨迹数据存入到一个巨大的表里。有多大呢?
最大存储量超过10亿行。具体数值应该是12亿多点,由于系统设计为只存储30天轨迹,所以线上期间最大存储只到这个数,再后来采用云架构,上云替换成非关系性数据库,获得了更高的写入性能和存储压缩能力。
每日写入量就超过1500万行。上下班交通高峰时候每秒写入量平均超过500行。也就是500iops,距离系统设计的压测指标3000还有一大截
这张大型单表设计要点:(一个聚集索引用于写入,一个联合索引用于查询,没有主键,使用表分区)
明确主键用途:
真的需要查询单行数据时候才需要主键!
我采用无主键设计,用于避免写入时候浪费维护插入数据的性能。最早使用聚集的类似自增的id主键,压测写入超过5亿行的时候,写入性能缩减一半
准确适用聚集:
写入的数据在硬盘物理顺序上是追加,而不是插入!
我把时间戳字段设置为聚集索引,用于聚集写入目的设计。保证硬盘上的物理写入顺序,不浪费性能用于插入数据
职责足够单一:
用于精准索引!
使用时间+设备联合索引,保证这张表只有一个查询用途。保证系统只有一种查询目的:按照设备号,查询一个时间段的数据。
精确的表分区:
要求查询时候限定最大量或者最大取值范围!
按天进行表分区,实现大数据量下的高效查询。这里是本文重点,按照聚集索引进行,可以让目标数据局限在更小的范围进行,虽然单表数据上亿,但是查询基本上只在某一天的的几千万里进行索引查询
每张表会有各自的特点,不可生搬硬套,总结下我这张表的特点:
只增,不删,不改!
关于不删除中:每天使用作业删除超过30天的那个分区数据除外,因为要清空旧的表分区,腾出新的表分区!
只有一个业务查询:只按照设备编码查询某个时间段
只有一个运维删除:删除旧的分区数据
这张表,是我技术生涯中进步的一个大阶梯,让我我体会到了系统架构的意义。
虽然我的这张举行表看似只有4个关键点,但是这四个非常精准的关键点设计,耗费了我一个月之久!正是这么足够精准的表结构设计,才撑起了后来压测并发量超过3000的并发写入量!压测的指标跟数据库所在的硬盘有直接关系,当时选取的硬盘是4块10000转的SAS盘做了Raid10的环境
关于后来为什么没有更高的实际应用数值,是因为系统后来改版为云架构,使用了阿里云,更改为写入性能更高的非关系型数
MySQL是一款常用的关系型数据库管理系统,它的 CPU 平均使用率指的是 MySQL 进程在某一时间段内 CPU 的平均使用率。通常情况下,MySQL CPU 平均使用率应该保持在合理的范围内,过高的 CPU 使用率可能会导致 MySQL 性能下降。
如果你想要查看 MySQL CPU 平均使用率,可以使用以下方法:
使用 MySQL 的状态监控工具:MySQL 提供了一些状态监控工具,如 mysqladmin、mysqltuner 等,这些工具可以帮助你查看 MySQL 的 CPU 使用情况。