大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
二叉树的相关操作,包括创建,中序、先序、后序(递归和非递归),其中重点的是java在先序创建二叉树和后序非递归遍历的的实现。
成都创新互联服务热线:028-86922220,为您提供成都网站建设网页设计及定制高端网站建设服务,成都创新互联网页制作领域10余年,包括成都PVC花箱等多个领域拥有多年设计经验,选择成都创新互联,为企业锦上添花!
package com.algorithm.tree;
import java.io.File;
import java.io.FileNotFoundException;
import java.util.Queue;
import java.util.Scanner;
import java.util.Stack;
import java.util.concurrent.LinkedBlockingQueue;
public class Tree {
private Node root;
public Tree() {
}
public Tree(Node root) {
this.root = root;
}
//创建二叉树
public void buildTree() {
Scanner scn = null;
try {
scn = new Scanner(new File("input.txt"));
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
root = createTree(root,scn);
}
//先序遍历创建二叉树
private Node createTree(Node node,Scanner scn) {
String temp = scn.next();
if (temp.trim().equals("#")) {
return null;
} else {
node = new Node((T)temp);
node.setLeft(createTree(node.getLeft(), scn));
node.setRight(createTree(node.getRight(), scn));
return node;
}
}
//中序遍历(递归)
public void inOrderTraverse() {
inOrderTraverse(root);
}
public void inOrderTraverse(Node node) {
if (node != null) {
inOrderTraverse(node.getLeft());
System.out.println(node.getValue());
inOrderTraverse(node.getRight());
}
}
//中序遍历(非递归)
public void nrInOrderTraverse() {
StackNode stack = new StackNode();
Node node = root;
while (node != null || !stack.isEmpty()) {
while (node != null) {
stack.push(node);
node = node.getLeft();
}
node = stack.pop();
System.out.println(node.getValue());
node = node.getRight();
}
}
//先序遍历(递归)
public void preOrderTraverse() {
preOrderTraverse(root);
}
public void preOrderTraverse(Node node) {
if (node != null) {
System.out.println(node.getValue());
preOrderTraverse(node.getLeft());
preOrderTraverse(node.getRight());
}
}
//先序遍历(非递归)
public void nrPreOrderTraverse() {
StackNode stack = new StackNode();
Node node = root;
while (node != null || !stack.isEmpty()) {
while (node != null) {
System.out.println(node.getValue());
stack.push(node);
node = node.getLeft();
}
node = stack.pop();
node = node.getRight();
}
}
//后序遍历(递归)
public void postOrderTraverse() {
postOrderTraverse(root);
}
public void postOrderTraverse(Node node) {
if (node != null) {
postOrderTraverse(node.getLeft());
postOrderTraverse(node.getRight());
System.out.println(node.getValue());
}
}
//后续遍历(非递归)
public void nrPostOrderTraverse() {
StackNode stack = new StackNode();
Node node = root;
Node preNode = null;//表示最近一次访问的节点
while (node != null || !stack.isEmpty()) {
while (node != null) {
stack.push(node);
node = node.getLeft();
}
node = stack.peek();
if (node.getRight() == null || node.getRight() == preNode) {
System.out.println(node.getValue());
node = stack.pop();
preNode = node;
node = null;
} else {
node = node.getRight();
}
}
}
//按层次遍历
public void levelTraverse() {
levelTraverse(root);
}
public void levelTraverse(Node node) {
QueueNode queue = new LinkedBlockingQueueNode();
queue.add(node);
while (!queue.isEmpty()) {
Node temp = queue.poll();
if (temp != null) {
System.out.println(temp.getValue());
queue.add(temp.getLeft());
queue.add(temp.getRight());
}
}
}
}
//树的节点
class Node {
private Node left;
private Node right;
private T value;
public Node() {
}
public Node(Node left,Node right,T value) {
this.left = left;
this.right = right;
this.value = value;
}
public Node(T value) {
this(null,null,value);
}
public Node getLeft() {
return left;
}
public void setLeft(Node left) {
this.left = left;
}
public Node getRight() {
return right;
}
public void setRight(Node right) {
this.right = right;
}
public T getValue() {
return value;
}
public void setValue(T value) {
this.value = value;
}
}
测试代码:
package com.algorithm.tree;
public class TreeTest {
/**
* @param args
*/
public static void main(String[] args) {
Tree tree = new Tree();
tree.buildTree();
System.out.println("中序遍历");
tree.inOrderTraverse();
tree.nrInOrderTraverse();
System.out.println("后续遍历");
//tree.nrPostOrderTraverse();
tree.postOrderTraverse();
tree.nrPostOrderTraverse();
System.out.println("先序遍历");
tree.preOrderTraverse();
tree.nrPreOrderTraverse();
//
}
}
//******************************************************************************************************//
//*****本程序包括简单的二叉树类的实现和前序,中序,后序,层次遍历二叉树算法,*******//
//******以及确定二叉树的高度,制定对象在树中的所处层次以及将树中的左右***********//
//******孩子节点对换位置,返回叶子节点个数删除叶子节点,并输出所删除的叶子节点**//
//*******************************CopyRight By phoenix*******************************************//
//************************************Jan 12,2008*************************************************//
//****************************************************************************************************//
public class BinTree {
public final static int MAX=40;
private Object data; //数据元数
private BinTree left,right; //指向左,右孩子结点的链
BinTree []elements = new BinTree[MAX];//层次遍历时保存各个节点
int front;//层次遍历时队首
int rear;//层次遍历时队尾
public BinTree()
{
}
public BinTree(Object data)
{ //构造有值结点
this.data = data;
left = right = null;
}
public BinTree(Object data,BinTree left,BinTree right)
{ //构造有值结点
this.data = data;
this.left = left;
this.right = right;
}
public String toString()
{
return data.toString();
}//前序遍历二叉树
public static void preOrder(BinTree parent){
if(parent == null)
return;
System.out.print(parent.data+" ");
preOrder(parent.left);
preOrder(parent.right);
}//中序遍历二叉树
public void inOrder(BinTree parent){
if(parent == null)
return;
inOrder(parent.left);
System.out.print(parent.data+" ");
inOrder(parent.right);
}//后序遍历二叉树
public void postOrder(BinTree parent){
if(parent == null)
return;
postOrder(parent.left);
postOrder(parent.right);
System.out.print(parent.data+" ");
}// 层次遍历二叉树
public void LayerOrder(BinTree parent)
{
elements[0]=parent;
front=0;rear=1;
while(frontrear)
{
try
{
if(elements[front].data!=null)
{
System.out.print(elements[front].data + " ");
if(elements[front].left!=null)
elements[rear++]=elements[front].left;
if(elements[front].right!=null)
elements[rear++]=elements[front].right;
front++;
}
}catch(Exception e){break;}
}
}//返回树的叶节点个数
public int leaves()
{
if(this == null)
return 0;
if(left == nullright == null)
return 1;
return (left == null ? 0 : left.leaves())+(right == null ? 0 : right.leaves());
}//结果返回树的高度
public int height()
{
int heightOfTree;
if(this == null)
return -1;
int leftHeight = (left == null ? 0 : left.height());
int rightHeight = (right == null ? 0 : right.height());
heightOfTree = leftHeightrightHeight?rightHeight:leftHeight;
return 1 + heightOfTree;
}
//如果对象不在树中,结果返回-1;否则结果返回该对象在树中所处的层次,规定根节点为第一层
public int level(Object object)
{
int levelInTree;
if(this == null)
return -1;
if(object == data)
return 1;//规定根节点为第一层
int leftLevel = (left == null?-1:left.level(object));
int rightLevel = (right == null?-1:right.level(object));
if(leftLevel0rightLevel0)
return -1;
levelInTree = leftLevelrightLevel?rightLevel:leftLevel;
return 1+levelInTree;
}
//将树中的每个节点的孩子对换位置
public void reflect()
{
if(this == null)
return;
if(left != null)
left.reflect();
if(right != null)
right.reflect();
BinTree temp = left;
left = right;
right = temp;
}// 将树中的所有节点移走,并输出移走的节点
public void defoliate()
{
String innerNode = "";
if(this == null)
return;
//若本节点是叶节点,则将其移走
if(left==nullright == null)
{
System.out.print(this + " ");
data = null;
return;
}
//移走左子树若其存在
if(left!=null){
left.defoliate();
left = null;
}
//移走本节点,放在中间表示中跟移走...
innerNode += this + " ";
data = null;
//移走右子树若其存在
if(right!=null){
right.defoliate();
right = null;
}
}
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
BinTree e = new BinTree("E");
BinTree g = new BinTree("G");
BinTree h = new BinTree("H");
BinTree i = new BinTree("I");
BinTree d = new BinTree("D",null,g);
BinTree f = new BinTree("F",h,i);
BinTree b = new BinTree("B",d,e);
BinTree c = new BinTree("C",f,null);
BinTree tree = new BinTree("A",b,c);
System.out.println("前序遍历二叉树结果: ");
tree.preOrder(tree);
System.out.println();
System.out.println("中序遍历二叉树结果: ");
tree.inOrder(tree);
System.out.println();
System.out.println("后序遍历二叉树结果: ");
tree.postOrder(tree);
System.out.println();
System.out.println("层次遍历二叉树结果: ");
tree.LayerOrder(tree);
System.out.println();
System.out.println("F所在的层次: "+tree.level("F"));
System.out.println("这棵二叉树的高度: "+tree.height());
System.out.println("--------------------------------------");
tree.reflect();
System.out.println("交换每个节点的孩子节点后......");
System.out.println("前序遍历二叉树结果: ");
tree.preOrder(tree);
System.out.println();
System.out.println("中序遍历二叉树结果: ");
tree.inOrder(tree);
System.out.println();
System.out.println("后序遍历二叉树结果: ");
tree.postOrder(tree);
System.out.println();
System.out.println("层次遍历二叉树结果: ");
tree.LayerOrder(tree);
System.out.println();
System.out.println("F所在的层次: "+tree.level("F"));
System.out.println("这棵二叉树的高度: "+tree.height());
}
首先我想问为什么要用LinkedList 来建立二叉树呢? LinkedList 是线性表,
树是树形的, 似乎不太合适。
其实也可以用数组完成,而且效率更高.
关键是我觉得你这个输入本身就是一个二叉树啊,
String input = "ABCDE F G";
节点编号从0到8. 层次遍历的话:
对于节点i.
leftChild = input.charAt(2*i+1); //做子树
rightChild = input.charAt(2*i+2);//右子树
如果你要将带有节点信息的树存到LinkedList里面, 先建立一个节点类:
class Node{
public char cValue;
public Node leftChild;
public Node rightChild;
public Node(v){
this.cValue = v;
}
}
然后遍历input,建立各个节点对象.
LinkedList tree = new LinkedList();
for(int i=0;i input.length;i++)
LinkedList.add(new Node(input.charAt(i)));
然后为各个节点设置左右子树:
for(int i=0;iinput.length;i++){
((Node)tree.get(i)).leftChild = (Node)tree.get(2*i+1);
((Node)tree.get(i)).rightChild = (Node)tree.get(2*i+2);
}
这样LinkedList 就存储了整个二叉树. 而第0个元素就是树根,思路大体是这样吧。