大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
如何在python项目中实现一个线性回归功能?相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。
成都创新互联公司坚持“要么做到,要么别承诺”的工作理念,服务领域包括:做网站、网站建设、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的安源网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!import os import tensorflow as tf def linear_regression(): """ 自实现一个线性回归 :return: """ # 命名空间 with tf.variable_scope("prepared_data"): # 准备数据 x = tf.random_normal(shape=[100, 1], name="Feature") y_true = tf.matmul(x, [[0.08]]) + 0.7 # x = tf.constant([[1.0], [2.0], [3.0]]) # y_true = tf.constant([[0.78], [0.86], [0.94]]) with tf.variable_scope("create_model"): # 2.构造函数 # 定义模型变量参数 weights = tf.Variable(initial_value=tf.random_normal(shape=[1, 1], name="Weights")) bias = tf.Variable(initial_value=tf.random_normal(shape=[1, 1], name="Bias")) y_predit = tf.matmul(x, weights) + bias with tf.variable_scope("loss_function"): # 3.构造损失函数 error = tf.reduce_mean(tf.square(y_predit - y_true)) with tf.variable_scope("optimizer"): # 4.优化损失 optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(error) # 收集变量 tf.summary.scalar("error", error) tf.summary.histogram("weights", weights) tf.summary.histogram("bias", bias) # 合并变量 merged = tf.summary.merge_all() # 创建saver对象 saver = tf.train.Saver() # 显式的初始化变量 init = tf.global_variables_initializer() # 开启会话 with tf.Session() as sess: # 初始化变量 sess.run(init) # 创建事件文件 file_writer = tf.summary.FileWriter("E:/tmp/linear", graph=sess.graph) # print(x.eval()) # print(y_true.eval()) # 查看初始化变量模型参数之后的值 print("训练前模型参数为:权重%f,偏置%f" % (weights.eval(), bias.eval())) # 开始训练 for i in range(1000): sess.run(optimizer) print("第%d次参数为:权重%f,偏置%f,损失%f" % (i + 1, weights.eval(), bias.eval(), error.eval())) # 运行合并变量操作 summary = sess.run(merged) # 将每次迭代后的变量写入事件 file_writer.add_summary(summary, i) # 保存模型 if i == 999: saver.save(sess, "./tmp/model/my_linear.ckpt") # # 加载模型 # if os.path.exists("./tmp/model/checkpoint"): # saver.restore(sess, "./tmp/model/my_linear.ckpt") print("参数为:权重%f,偏置%f,损失%f" % (weights.eval(), bias.eval(), error.eval())) pre = [[0.5]] prediction = tf.matmul(pre, weights) + bias sess.run(prediction) print(prediction.eval()) return None if __name__ == "__main__": linear_regression()
看完上述内容,你们掌握如何在python项目中实现一个线性回归功能的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注创新互联行业资讯频道,感谢各位的阅读!