大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
Python中怎么利用Pandas根据列的值选取多行数据,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。
成都创新互联专注为客户提供全方位的互联网综合服务,包含不限于成都网站设计、成都网站建设、汉阳网络推广、成都微信小程序、汉阳网络营销、汉阳企业策划、汉阳品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们大的嘉奖;成都创新互联为所有大学生创业者提供汉阳建站搭建服务,24小时服务热线:13518219792,官方网址:www.cdcxhl.comPandas中根据列的值选取多行数据
# 选取等于某些值的行记录 用 == df.loc[df['column_name'] == some_value] # 选取某列是否是某一类型的数值 用 isin df.loc[df['column_name'].isin(some_values)] # 多种条件的选取 用 & df.loc[(df['column'] == some_value) & df['other_column'].isin(some_values)] # 选取不等于某些值的行记录 用 != df.loc[df['column_name'] != some_value] # isin返回一系列的数值,如果要选择不符合这个条件的数值使用~ df.loc[~df['column_name'].isin(some_values)] import pandas as pd import numpy as np df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(), 'B': 'one one two three two two one three'.split(), 'C': np.arange(8), 'D': np.arange(8) * 2}) print(df) A B C D 0 foo one 0 0 1 bar one 1 2 2 foo two 2 4 3 bar three 3 6 4 foo two 4 8 5 bar two 5 10 6 foo one 6 12 7 foo three 7 14 print(df.loc[df['A'] == 'foo']) A B C D 0 foo one 0 0 2 foo two 2 4 4 foo two 4 8 6 foo one 6 12 7 foo three 7 14 # 如果你想包括多个值,把它们放在一个list里面,然后使用isin print(df.loc[df['B'].isin(['one','three'])]) A B C D 0 foo one 0 0 1 bar one 1 2 3 bar three 3 6 6 foo one 6 12 7 foo three 7 14 df = df.set_index(['B']) print(df.loc['one']) A B C D one foo 0 0 one bar 1 2 one foo 6 12 A B C D one foo 0 0 one bar 1 2 two foo 2 4 two foo 4 8 two bar 5 10 one foo 6 12
看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注创新互联行业资讯频道,感谢您对创新互联的支持。