大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章将为大家详细讲解有关如何使用pandas处理json数据,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。
专注于为中小企业提供成都网站建设、网站制作服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业文安免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了1000多家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。json字符串:
strtext='[{"ttery":"min","issue":"20130801-3391","code":"8,4,5,2,9","code1":"297734529","code2":null,"time":1013395466000},\ {"ttery":"min","issue":"20130801-3390","code":"7,8,2,1,2","code1":"298058212","code2":null,"time":1013395406000},\ {"ttery":"min","issue":"20130801-3389","code":"5,9,1,2,9","code1":"298329129","code2":null,"time":1013395346000},\ {"ttery":"min","issue":"20130801-3388","code":"3,8,7,3,3","code1":"298588733","code2":null,"time":1013395286000},\ {"ttery":"min","issue":"20130801-3387","code":"0,8,5,2,7","code1":"298818527","code2":null,"time":1013395226000}]'
pandas.read_json的语法如下:
pandas.read_json(path_or_buf=None, orient=None, typ='frame', dtype=True, convert_axes=True, convert_dates=True, keep_default_dates=True, numpy=False, precise_float=False, date_unit=None, encoding=None, lines=False, chunksize=None, compression='infer')
第一参数就是json文件路径或者json格式的字符串。
第二参数orient是表明预期的json字符串格式。orient的设置有以下几个值:
(1).'split' : dict like {index -> [index], columns -> [columns], data -> [values]}
这种就是有索引,有列字段,和数据矩阵构成的json格式。key名称只能是index,columns和data。
'records' : list like [{column -> value}, ... , {column -> value}]
这种就是成员为字典的列表。如我今天要处理的json数据示例所见。构成是列字段为键,值为键值,每一个字典成员就构成了dataframe的一行数据。
'index' : dict like {index -> {column -> value}}
以索引为key,以列字段构成的字典为键值。如:
'columns' : dict like {column -> {index -> value}}
这种处理的就是以列为键,对应一个值字典的对象。这个字典对象以索引为键,以值为键值构成的json字符串。如下图所示:
'values' : just the values array。
values这种我们就很常见了。就是一个嵌套的列表。里面的成员也是列表,2层的。
主要就说下这两个参数吧。下面我们回到示例中来。我们看前面可以发现示例是一个orient为records的json字符串。
这样就好处理了。看代码:
# -*- coding: utf-8 -*- """ Created on Sun Aug 5 09:01:38 2018 @author: FanXiaoLei """ import pandas as pd strtext='[{"ttery":"min","issue":"20130801-3391","code":"8,4,5,2,9","code1":"297734529","code2":null,"time":1013395466000},\ {"ttery":"min","issue":"20130801-3390","code":"7,8,2,1,2","code1":"298058212","code2":null,"time":1013395406000},\ {"ttery":"min","issue":"20130801-3389","code":"5,9,1,2,9","code1":"298329129","code2":null,"time":1013395346000},\ {"ttery":"min","issue":"20130801-3388","code":"3,8,7,3,3","code1":"298588733","code2":null,"time":1013395286000},\ {"ttery":"min","issue":"20130801-3387","code":"0,8,5,2,7","code1":"298818527","code2":null,"time":1013395226000}]' df=pd.read_json(strtext,orient='records') df.to_excel('pandas处理json.xlsx',index=False,columns=["ttery","issue","code","code1","code2","time"])
最终写入excel如下图:
关于如何使用pandas处理json数据就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。