大橙子网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

如何安装配置TensorFlow环境-创新互联

这篇文章将为大家详细讲解有关如何安装配置TensorFlow环境,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

创新互联公司是一家专注于网站设计、成都网站制作与策划设计,万年网站建设哪家好?创新互联公司做网站,专注于网站建设十多年,网设计领域的专业建站公司;建站业务涵盖:万年等地区。万年做网站价格咨询:18980820575

记录一下安装win10+GeForce GTX1060+CUDA 9.0+cuDNN7.3+tensorflow-gpu 1.12.0+python3.5.5

之前已经安装过pycharm、Anaconda以及VS2013,因此,安装记录从此后开始

总体步骤大致如下:

1、确认自己电脑显卡型号是否支持CUDA(此处有坑)

此处有坑!不要管NVIDIA控制面板组件中显示的是CUDA9.2.148。

你下载的CUDA不一定需要匹配,尤其是CUDA9.2,最好使用CUDA9.0,我就在此坑摔的比较惨。

2、下载CUDA以及cuDNN,注意版本对应①查看版本匹配:

https://www.tensorflow.org/install/source_windows

②下载CUDA:

https://developer.nvidia.com/cuda-toolkit-archive

官网上下载的CUDA 9.0有好几个版本,其中主要是cuda_9.0.176_win10.exe,其他的四个是补丁。

③下载cuDNN:

https://developer.nvidia.com/cudnn

https://developer.nvidia.com/rdp/cudnn-archive

下载cuDNN需要注册一个NVIDIA的账号。

3、安装CUDA和cuDNN,并设置环境变量(重要)①CUDA安装

我是按照默认路径安装的,没有修改。此外,使用自定义安装,但是几乎全选了,除了一个当前版本已经是最新版本的组件没有勾选。

切记CUDA的安装路径,因为安装cuDNN以及设置环境变量时需要。

②cuDNN9.0安装

cuDNN是一个压缩包,解压后的内容如下

如何安装配置TensorFlow环境

全选并复制所有内容,粘贴到CUDA的安装路径下,默认路径是:

③设置环境变量(重要)

这部分我主要参考的是:https://blog.csdn.net/qilixuening/article/details/77503631

计算机上点右键,打开属性->高级系统设置->环境变量,可以看到系统中多了两个环境变量,接下来,分别是:

CUDA_PATH和CUDA_PATH_V8_0。

还要在系统变量中新建以下几个环境变量:

CUDA_SDK_PATH = C:\ProgramData\NVIDIA Corporation\CUDA Samples\v9.0

CUDA_LIB_PATH = %CUDA_PATH%\lib\x64

CUDA_BIN_PATH = %CUDA_PATH%\bin

CUDA_SDK_BIN_PATH = %CUDA_SDK_PATH%\bin\win64

CUDA_SDK_LIB_PATH = %CUDA_SDK_PATH%\common\lib\x64

如下图所示:

然后在系统变量中找到 PATH,点击编辑并添加:

%CUDA_LIB_PATH%

%CUDA_BIN_PATH%

%CUDA_SDK_LIB_PATH%

%CUDA_SDK_BIN_PATH%

再添加如下4条(默认安装路径):

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64;

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin;

C:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0\common\lib\x64;

C:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0\bin\win64;

如果你选用了自定义路径,上述这些默认路径都应该相应替换为你的自定义路径。

④查验是否安装成功

重启计算机(必须),然后在Anaconda prompt中输入nvcc -V。(注意,V是大写)返回以下信息则安装成功。

4、创建tensorflow-gpu环境并激活

(此部分可参考的教程比较多,可自行搜索)

①conda create --name tensorflow-gpu python=3.5

在Anaconda Prompt 中输入conda create --name tensorflow-gpu python=3.5,创建名为tensorflow-gpu的环境(名字可以自己改,不一定都叫tensorflow-gpu)。

②activate tensorflow-gpu

按照提示,接下来activate tensorflow-gpu,进入到新创建的环境,退出时使用deactivate

③conda info --envs

最后,conda info --envs,查看创建的所有环境,确保tensorflow-gpu环境创建成功

5、安装tensorflow-gpu

使用activate进入到tensorflow-gpu环境,使用以下命令进行安装:

pip install --ignore-installed --upgrade tensorflow-gpu==1.12.0

如果安装缓慢请参考其他教程换源。

6、查验tensorflow是否安装成功

这部分主要参考:https://zhuanlan.zhihu.com/p/58607298

①activate到tensorflow-gpu环境中然后输入python进入到python中,输入一下代码:

import tensorflow as tf
hello = tf.constant('Hello , Tensorflow! ')
sess = tf.Session()
print(sess.run(hello))

网页名称:如何安装配置TensorFlow环境-创新互联
转载源于:http://dzwzjz.com/article/dhjiei.html
在线咨询
服务热线
服务热线:028-86922220
TOP