大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
paks[v-pak[i].cost])
创新互联拥有一支富有激情的企业网站制作团队,在互联网网站建设行业深耕10多年,专业且经验丰富。10多年网站优化营销经验,我们已为上千余家中小企业提供了成都网站设计、成都网站制作解决方案,按需设计网站,设计满意,售后服务无忧。所有客户皆提供一年免费网站维护!
这个地方的问题 , 你看下那个 v - pak[i].cost 这个是会出现负数
算法分析
对于背包问题,通常的处理方法是搜索。
用递归来完成搜索,算法设计如下:
function Make( i {处理到第i件物品} , j{剩余的空间为j}:integer) :integer;
初始时i=m , j=背包总容量
begin
if i:=0 then
Make:=0;
if j=wi then (背包剩余空间可以放下物品 i )
r1:=Make(i-1,j-wi)+v; (第i件物品放入所能得到的价值 )
r2:=Make(i-1,j) (第i件物品不放所能得到的价值 )
Make:=max{r1,r2}
end;
这个算法的时间复杂度是O(2^n),我们可以做一些简单的优化。
由于本题中的所有物品的体积均为整数,经过几次的选择后背包的剩余空间可能会相等,在搜索中会重复计算这些结点,所以,如果我们把搜索过程中计算过的结点的值记录下来,以保证不重复计算的话,速度就会提高很多。这是简单?quot;以空间换时间"。
我们发现,由于这些计算过程中会出现重叠的结点,符合动态规划中子问题重叠的性质。
同时,可以看出如果通过第N次选择得到的是一个最优解的话,那么第N-1次选择的结果一定也是一个最优解。这符合动态规划中最优子问题的性质。
考虑用动态规划的方法来解决,这里的:
阶段是:在前N件物品中,选取若干件物品放入背包中;
状态是:在前N件物品中,选取若干件物品放入所剩空间为W的背包中的所能获得的最大价值;
决策是:第N件物品放或者不放;
由此可以写出动态转移方程:
我们用f[i,j]表示在前 i 件物品中选择若干件放在所剩空间为 j 的背包里所能获得的最大价值
f[i,j]=max{f[i-1,j-Wi]+Pi (j=Wi), f[i-1,j]}
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c的背包中”,此时能获得的最大价值就是f[v-c]再加上通过放入第i件物品获得的价值w。
这样,我们可以自底向上地得出在前M件物品中取出若干件放进背包能获得的最大价值,也就是f[m,w]
算法设计如下:
procedure Make;
begin
for i:=0 to w do
f[0,i]:=0;
for i:=1 to m do
for j:=0 to w do begin
f[i,j]:=f[i-1,j];
if (j=w) and (f[i-1,j-w]+vf[i,j]) then
f[i,j]:=f[i-1,j-w]+v;
end;
writeln(f[m,wt]);
end;
由于是用了一个二重循环,这个算法的时间复杂度是O(n*w)。而用搜索的时候,当出现最坏的情况,也就是所有的结点都没有重叠,那么它的时间复杂度是O(2^n)。看上去前者要快很多。但是,可以发现在搜索中计算过的结点在动态规划中也全都要计算,而且这里算得更多(有一些在最后没有派上用场的结点我们也必须计算),在这一点上好像是矛盾的。
事实上,由于我们定下的前提是:所有的结点都没有重叠。也就是说,任意N件物品的重量相加都不能相等,而所有物品的重量又都是整数,那末这个时候W的最小值是:1+2+2^2+2^3+……+2^n-1=2^n -1
此时n*w2^n,动态规划比搜索还要慢~~|||||||所以,其实背包的总容量W和重叠的结点的个数是有关的。
考虑能不能不计算那些多余的结点……
优化时间复杂度
以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[0..V]的所有值。那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[v]呢?f[v]是由f[v]和f[v-c]两个子问题递推而来,能否保证在推f[v]时(也即在第i次主循环中推f[v]时)能够得到f[v]和f[v-c]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c]保存的是状态f[v-c]的值。伪代码如下:
for i=1..N
for v=V..0
f[v]=max{f[v],f[v-c]+w};
其中的f[v]=max{f[v],f[v-c]}一句恰就相当于我们的转移方程f[v]=max{f[v],f[v-c]},因为现在的f[v-c]就相当于原来的f[v-c]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[v]由f[v-c]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。
事实上,使用一维数组解01背包的程序在后面会被多次用到,所以这里抽象出一个处理一件01背包中的物品过程,以后的代码中直接调用不加说明。
过程ZeroOnePack,表示处理一件01背包中的物品,两个参数cost、weight分别表明这件物品的费用和价值。
procedure ZeroOnePack(cost,weight)
for v=V..cost
f[v]=max{f[v],f[v-cost]+weight}
注意这个过程里的处理与前面给出的伪代码有所不同。前面的示例程序写成v=V..0是为了在程序中体现每个状态都按照方程求解了,避免不必要的思维复杂度。而这里既然已经抽象成看作黑箱的过程了,就可以加入优化。费用为cost的物品不会影响状态f[0..cost-1],这是显然的。
有了这个过程以后,01背包问题的伪代码就可以这样写:
for i=1..N
ZeroOnePack(c,w);
初始化的细节问题
我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。
如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。
如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。
为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。
这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始化进行讲解
因为你把n和c 定义为static ,而且初始化为0,。数组也为静态的,一个类中静态的变量在这个类加载的时候就会执行,所以当你这类加载的时候,你的数组static int[] v = new int[n];
static int[] w = new int[n];
就已经初始化完毕,而且数组大小为0。在main方法里动态改变n的值是改变不了已经初始化完毕的数组的大小的,因为组已经加载完毕。
我建议你可以在定义n,c是就为其赋初值。比如(static int n=2 static int c=3)
有点问题:
public static void knapsack(int[]v,int[]w,int c,int[][]m)
{
int n=v.length-1;
int jMax=Math.min(w[n]-1,c);
for(int j=0;j=jMax;j++)
m[n][j]=0;
for(int j=w[n];j=c;j++)
m[n][j]=v[n];
for(int i=n-1;i1;i--)
{
jMax=Math.min(w[i]-1,c);
for(int j=0;j=jMax;j++)
m[i][j]=m[i+1][j];
for(int j=w[i];j=c;j++)
m[i][j]=Math.max(m[i+1][j],m[i+1][j-w[i]]+v[i]);
}
m[1][c]=m[2][c];
if(c=w[1])
m[1][c]=Math.max(m[1][c],m[2][c-w[1]]+v[1]);
}
public static void traceback(int[][]m,int[]w,int c,int[]x)
{
int n=w.length-1;
for(int i=1;in;i++) {
if(m[i][c]==m[i+1][c])x[i]=0;
else {
x[i]=1;
c-=w[i];
}
x[n]=(m[n][c]0)?1:0;
}
//int n=w.length-1;
for(int i=1;in;i++)
if(m[i][c]==m[i+1][c])x[i]=0;
else {
x[i]=1;
c-=w[i];
}
x[n]=(m[n][c]0)?1:0;
}
BIAS0:= (C-MA(C,2))/MA(C,2)*100;
BIAS1 := (C-MA(C,12))/MA(C,12)*100;
BIAS2 := (C-MA(C,26))/MA(C,26)*100;
BIAS3 := (C-MA(C,48))/MA(C,48)*100;
HXL:=V/CAPITAL*100;
D1:=INDEXC;
D2:=MA(D1,56);
DR2:=D1/D20.94;
E1:=(C-HHV(C,12))/HHV(C,12)*10;
E2:=(C-REF(C,26))/REF(C,26)*10;
基本概念
问题雏形
01背包题目的雏形是:
有N件物品和一个容量为V的背包。第i件物品的体积是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。
从这个题目中可以看出,01背包的特点就是:每种物品仅有一件,可以选择放或不放。
其状态转移方程是:
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
对于这方方程其实并不难理解,方程之中,现在需要放置的是第i件物品,这件物品的体积是c[i],价值是w[i],因此f[i-1][v]代表的就是不将这件物品放入背包,而f[i-1][v-c[i]]+w[i]则是代表将第i件放入背包之后的总价值,比较两者的价值,得出最大的价值存入现在的背包之中。
理解了这个方程后,将方程代入实际题目的应用之中,可得
for (i = 1; i = n; i++)
for (j = v; j = c[i]; j--)//在这里,背包放入物品后,容量不断的减少,直到再也放不进了
f[i][j] = max(f[i - 1][j], f[i - 1][j - c[i]] + w[i]);
问题描述
求出获得最大价值的方案。
注意:在本题中,所有的体积值均为整数。
算法分析
对于背包问题,通常的处理方法是搜索。
用递归来完成搜索,算法设计如下:
int make(int i, int j)//处理到第i件物品,剩余的空间为j 初始时i=m , j=背包总容量
{
if (i == 0) return 0;
if (j = c[i])//(背包剩余空间可以放下物品 i )
{
int r1 = make(i - 1, j - w[i]);//第i件物品放入所能得到的价值
int r2 = make(i - 1, j);//第i件物品不放所能得到的价值
return min(r1, r2);
}
return make(i - 1, j);//放不下物品 i
}
这个算法的时间复杂度是O(n^2),我们可以做一些简单的优化。
由于本题中的所有物品的体积均为整数,经过几次的选择后背包的剩余空间可能会相等,在搜索中会重复计算这些结点,所以,如果我们把搜索过程中计算过的结点的值记录下来,以保证不重复计算的话,速度就会提高很多。这是简单的“以空间换时间”。
我们发现,由于这些计算过程中会出现重叠的结点,符合动态规划中子问题重叠的性质。
同时,可以看出如果通过第N次选择得到的是一个最优解的话,那么第N-1次选择的结果一定也是一个最优解。这符合动态规划中最优子问题的性质。
解决方案
考虑用动态规划的方法来解决,这里的:
阶段:在前N件物品中,选取若干件物品放入背包中
状态:在前N件物品中,选取若干件物品放入所剩空间为W的背包中的所能获得的最大价值
决策:第N件物品放或者不放
由此可以写出动态转移方程:
我们用f[i][j]表示在前 i 件物品中选择若干件放在已用空间为 j 的背包里所能获得的最大价值
f[i][j] = max(f[i - 1][j - W[i]] + P[i], f[i - 1][j]);//j = W[ i ]
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[v];如果放第i件物品,那么问题就转化为“前i-1件物品放入已用的容量为c的背包中”,此时能获得的最大价值就是f[c]再加上通过放入第i件物品获得的价值w。
这样,我们可以自底向上地得出在前M件物品中取出若干件放进背包能获得的最大价值,也就是f[m,w]
算法设计如下:
int main()
{
cin n v;
for (int i = 1; i = n; i++)
cin c[i];//价值
for (int i = 1; i = n; i++)
cin w[i];//体积
for (int i = 1; i = n; i++)
f[i][0] = 0;
for (int i = 1; i = n; i++)
for (int j = 1; j = v; j++)
if (j = w[i])//背包容量够大
f[i][j] = max(f[i - 1][j - w[i]] + c[i], f[i - 1][j]);
else//背包容量不足
f[i][j] = f[i - 1][j];
cout f[n][v] endl;
return 0;
}
由于是用了一个二重循环,这个算法的时间复杂度是O(n*w)。而用搜索的时候,当出现最坏的情况,也就是所有的结点都没有重叠,那么它的时间复杂度是O(2^n)。看上去前者要快很多。但是,可以发现在搜索中计算过的结点在动态规划中也全都要计算,而且这里算得更多(有一些在最后没有派上用场的结点我们也必须计算),在这一点上好像是矛盾的。