大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
import numpy as np
海城网站建设公司创新互联,海城网站设计制作,有大型网站制作公司丰富经验。已为海城成百上千家提供企业网站建设服务。企业网站搭建\外贸网站制作要多少钱,请找那个售后服务好的海城做网站的公司定做!
def solve_quad(a,b,c):
if a == 0:
print('您输入的不是二次方程!')
else:
delta = b*b-4*a*c
x = -b/(2*a)
if delta == 0:
print('方程有惟一解,X=%f'%(x))
return x
elif delta 0:
x1 = x-np.sqrt(delta)/(2*a)
x2 = x+np.sqrt(delta)/(2*a)
print('方程有两个实根:X1=%f,X2=%f'%(x1,x2))
return x1,x2
else:
x1 = (-b+complex(0,1)*np.sqrt((-1)*delta))/(2*a)
x2 = (-b-complex(0,1)*np.sqrt((-1)*delta))/(2*a)
print(x1,x2)
return x1,x2
Python
是完全面向对象的语言。函数、模块、数字、字符串都是对象。并且完全支持继承、重载、派生、多继承,有益于增强源代码的复用性。Python支持重载运算符和动态类型。相对于Lisp这种传统的函数式编程语言,Python对函数式设计只提供了有限的支持。有两个标准库(functools, itertools)提供了Haskell和Standard ML中久经考验的函数式程序设计工具。
import math
def erfenfa(function, a, b): #定义函数,利用二分法求方程的根,function为具体方程,a,b为根的取值范围
start = a
end = b
if function(a) == 0:
return a
elif function(b) == 0:
return b
elif function(a) * function(b) 0:
print("couldn't find root in [a,b]")
return
else:
mid = (start + end) / 2
while abs(start - mid) 0.0000001:
if function(mid) == 0:
return mid
elif function(mid) * function(start) 0:
end = mid
else:
start = mid
mid = (start + end) / 2
return mid
def f(x):#定义构造方程式函数
return math.pow(x, 5) -15*math.pow(x, 4) +85*math.pow(x, 3)-225*pow(x,2)+274*x - 121
print(round(erfenfa(f, 1.5, 2.4),6))
解"复杂的复合函数的值域"类型的数学题可以使用 Python 中的函数来实现。
首先,我们需要定义各个组成复合函数的子函数。这些子函数可以使用 Python 中的 math 库来实现,也可以自己定义。例如,我们定义一个复合函数 f(x) = cos(e^x),那么我们可以定义子函数 f1(x) = e^x 和 f2(x) = cos(x)。
然后,我们可以使用 Python 中的 lambda 函数来定义复合函数 f(x) = cos(e^x)。lambda 函数是一种匿名函数,可以用来定义简单的函数。例如,我们可以使用如下代码定义复合函数 f(x) = cos(e^x):
from math import exp, cos
f = lambda x: cos(exp(x))
最后,我们可以使用 Python 中的函数来计算复合函数的值域。例如,我们可以使用如下代码来计算函数 f(x) = cos(e^x) 在 x = 1 时的值:
x = 1print(f(x))
注意,上述代码仅供参考,具体的实现可能会有所不同,要根据具体题目来设计代码。
#includeiostream.h
#includemath.h
#includeconio.h
const int N=200;
//带入原函数后所得的值
double f(float x)
{
return (x*x*x-1.8*x*x+0.15*x+0.65);
}
//带入一阶导函数后所得的值
double f1(double x)
{
return (3*x*x-3.6*x+0.15);
}
//牛顿迭代函数
double F(double x)
{
double x1;
x1=x-1.0*f(x)/f1(x);
return (x1);
}
void main()
{
double x0,D_value,x1,y[4];
int k=0,count=0;
for(;;)
{
if(count==3)break;
cout"输入初始值:";
cinx0;
do
{
k++;
x1=F(x0);
D_value=fabs(x1-x0);
x0=x1;
}
while((D_value0.000005)(k=N));
for(int j=0,flag=0;jcount;j++)
{
if(fabs(y[j]-x1)0.000005)
{ flag=1;
cout"该数值附近的根已经求出,请重新换近似值"endl;
break;
}
}
if(flag==1)
continue;
else
{
cout"方程的一个根:"x1","" 迭代次数为:"kendl;
y[count]=x1;
count++;
}
//else
//cout"计算失败!"endl;
}
}
//你的程序其实没问题,牛顿迭代法本身循环一次只能找到一个答案,只要再建一个循环控制使
//用迭代法的次数和判断根的个数就行。我又加了一个判断是否有重复的根的循环。
//希望能对你有所帮助。
t,a,r=0,1,0
while a=100:
空if t==0:
空空r,t=r+a,1
空else:
空空r,t=r-a,0
空a+=2
print r
以f(x)=3x^2-e^x为例,以下为C++代码:
#includeiostream
{
double x;
cout"输入du初始迭代zhi值:"endl;
cinx;
while(abs(f(x))0.00001) x=x-f(x)/fd(x);
cout"计算结果: x="x", f(x)="f(x)endl;
system("pause");
return 0;
运行结果:输入0.9,输出daox=0.910008, f(x)=6.36005e-009
扩展资料:
根据PEP的规定,必须使用4个空格来表示每级缩进(不清楚4个空格的规定如何,在实际编写中可以自定义空格数,但是要满足每级缩进间空格数相等)。使用Tab字符和其它数目的空格虽然都可以编译通过,但不符合编码规范。支持Tab字符和其它数目的空格仅仅是为兼容很旧的的Python程序和某些有问题的编辑程序。
参考资料来源:百度百科-Python
import math
a=int(input('请输入a的值:'))
b=int(input('请输入b的值:'))
c=int(input('请输入c的值:'))
derta=(b**2-4*a*c)
if a == 0:
print('您输入的a为0,方程ax^2+bx+c=0不能作为一元二次方程')
elif derta0:
print('方程无实数解')
elif derta==0:
print('方程有解,有一个实数解:')
print(b*(-1)/(a*2))
else:
print('方程有解,有两个实数解:')
print((-1*b+math.sqrt(derta))/2*a)
print((-1*b-math.sqrt(derta))/2*a)