大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
首先,普及一下pandas与numpy的区别:
创新互联公司专业为企业提供武侯网站建设、武侯做网站、武侯网站设计、武侯网站制作等企业网站建设、网页设计与制作、武侯企业网站模板建站服务,10年武侯做网站经验,不只是建网站,更提供有价值的思路和整体网络服务。
pandas操作的数据集是Series,本质上是列表与字典的混合,常用的数据形式为DataFrame;
numpy操作的数据集是数组或矩阵。
1、对数组求均值、方差、标准差
2、对矩阵求标准差
注意:在求标准差时需要注意几个问题:
1、在统计学中,标准差分为两种:
(1)总体标准差:标准差公式根号内除以n,是有偏的。
(2)样本标准差:标准差公式根号内除以n-1,是无偏的。
2、pandas与numpy在计算标准差时的区别
(1)numpy
在numpy中计算标准差时,括号内要指定ddof的值,ddof表示自由度,当ddof=0时计算的是总体标准差;当ddof=1时计算的是样本标准差,当不为ddof设置值时,其默认为总体标准差。
(2)pandas
在使用pandas计算标准差时,其与numpy的默认情况是相反的,在默认情况下,pandas计算的标准差为样本标准差。
def fangcha(): a=float(raw_input("请输入a:")) b=float(raw_input("请输入b:")) c=float(raw_input("请输入C:")) d=(a+b+c)/3.0 e=((a-d)**2+(b-d)**2+(c-d)**2)/3.0 print "平均数是:%f方差是:%f" %(d,e) fangcha() Python2.7可用
采用matplotlib中的mlab模块,根据数据的均值及标准偏差求。
1、根据matplotlib中的mlab模块,得出数据的均值及标准偏差。
2、数据的均值,再除以标准偏差即可。
Python提供了高效的高级数据结构,还能简单有效地面向对象编程。
std()函数就是初高中学的标准差 numpy.std()
求标准差的时候默认是除以 n 的,即是有偏的,np.std无偏样本标准差方式为加入参数 ddof = 1