大橙子网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

关于python函数实现卷积的信息

OpenCV Python 系列教程4 - OpenCV 图像处理(上)

学习目标:

专业领域包括网站建设、成都网站设计、商城网站制作、微信营销、系统平台开发, 与其他网站设计及系统开发公司不同,创新互联的整合解决方案结合了帮做网络品牌建设经验和互联网整合营销的理念,并将策略和执行紧密结合,为客户提供全网互联网整合方案。

OpenCV 中有 150 多种色彩空间转化的方法,这里只讨论两种:

HSV的色相范围为[0,179],饱和度范围为[0,255],值范围为[0,255]。不同的软件使用不同的规模。如果要比较 OpenCV 值和它们,你需要标准化这些范围。

HSV 和 HLV 解释

运行结果:该段程序的作用是检测蓝色目标,同理可以检测其他颜色的目标

结果中存在一定的噪音,之后的章节将会去掉它

这是物体跟踪中最简单的方法。一旦你学会了等高线的函数,你可以做很多事情,比如找到这个物体的质心,用它来跟踪这个物体,仅仅通过在相机前移动你的手来画图表,还有很多其他有趣的事情。

菜鸟教程 在线 HSV- BGR 转换

比如要找出绿色的 HSV 值,可以使用上面的程序,得到的值取一个上下界。如上面的取下界 [H-10, 100, 100],上界 [H+10, 255, 255]

或者使用其他工具如 GIMP

学习目标:

对图像进行阈值处理,算是一种最简单的图像分割方法,基于图像与背景之间的灰度差异,此项分割是基于像素级的分割

threshold(src, thresh, maxval, type[, dst]) - retval, dst

计算图像小区域的阈值。所以我们对同一幅图像的不同区域得到不同的阈值,这给我们在不同光照下的图像提供了更好的结果。

三个特殊的输入参数和一个输出参数

adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C[, dst]) - dst

opencv-threshold-python

OpenCV 图片集

本节原文

学习目标:

OpenCV 提供两种变换函数: cv2.warpAffine 和 cv2.warpPerspective

cv2.resize() 完成缩放

文档说明

运行结果

说明 : cv2.INTER_LINEAR 方法比 cv2.INTER_CUBIC 还慢,好像与官方文档说的不一致? 有待验证。

速度比较: INTER_CUBIC INTER_NEAREST INTER_LINEAR INTER_AREA INTER_LANCZOS4

改变图像的位置,创建一个 np.float32 类型的变换矩阵,

warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]) - dst

运行结果:

旋转角度( )是通过一个变换矩阵变换的:

OpenCV 提供的是可调旋转中心的缩放旋转,这样你可以在任何你喜欢的位置旋转。修正后的变换矩阵为

这里

OpenCV 提供了 cv2.getRotationMatrix2D 控制

cv2.getRotationMatrix2D(center, angle, scale) → retval

运行结果

cv2.getAffineTransform(src, dst) → retval

函数关系:

\begin{bmatrix} x'_i \ y'_i \end{bmatrix}\begin{bmatrix} x'_i \ y'_i \end{bmatrix} =

其中

运行结果:图上的点便于观察,两图中的红点是相互对应的

透视变换需要一个 3x3 变换矩阵。转换之后直线仍然保持笔直,要找到这个变换矩阵,需要输入图像上的 4 个点和输出图像上的对应点。在这 4 个点中,有 3 个不应该共线。通过 cv2.getPerspectiveTransform 计算得到变换矩阵,得到的矩阵 cv2.warpPerspective 变换得到最终结果。

本节原文

平滑处理(smoothing)也称模糊处理(bluring),是一种简单且使用频率很高的图像处理方法。平滑处理的用途:常见是用来 减少图像上的噪点或失真 。在涉及到降低图像分辨率时,平滑处理是很好用的方法。

图像滤波:尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性。

消除图像中的噪声成分叫做图像的平滑化或滤波操作。信号或图像的能量大部分集中在幅度谱的低频和中频段,在高频段,有用的信息会被噪声淹没。因此一个能降低高频成分幅度的滤波器就能够减弱噪声的影响。

滤波的目的:抽出对象的特征作为图像识别的特征模式;为适应图像处理的要求,消除图像数字化时混入的噪声。

滤波处理的要求:不能损坏图像的轮廓及边缘等重要信息;图像清晰视觉效果好。

平滑滤波是低频增强的空间滤波技术,目的:模糊和消除噪音。

空间域的平滑滤波一般采用简单平均法,即求邻近像元点的平均亮度值。邻域的大小与平滑的效果直接相关,邻域越大平滑效果越好,但是邻域过大,平滑也会使边缘信息的损失的越大,从而使输出图像变得模糊。因此需要选择合适的邻域。

滤波器:一个包含加权系数的窗口,利用滤波器平滑处理图像时,把这个窗口放在图像上,透过这个窗口来看我们得到的图像。

线性滤波器:用于剔除输入信号中不想要的频率或者从许多频率中选择一个想要的频率。

低通滤波器、高通滤波器、带通滤波器、带阻滤波器、全通滤波器、陷波滤波器

boxFilter(src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]]) - dst

均值滤波是方框滤波归一化后的特殊情况。归一化就是要把处理的量缩放到一个范围内如 (0,1),以便统一处理和直观量化。非归一化的方框滤波用于计算每个像素邻近内的积分特性,比如密集光流算法中用到的图像倒数的协方差矩阵。

运行结果:

均值滤波是典型的线性滤波算法,主要方法为邻域平均法,即用一片图像区域的各个像素的均值来代替原图像中的各个像素值。一般需要在图像上对目标像素给出一个模板(内核),该模板包括了其周围的临近像素(比如以目标像素为中心的周围8(3x3-1)个像素,构成一个滤波模板,即 去掉目标像素本身 )。再用模板中的全体像素的平均值来代替原来像素值。即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度个g(x,y),即个g(x,y)=1/m ∑f(x,y) ,其中m为该模板中包含当前像素在内的像素总个数。

均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。

cv2.blur(src, ksize[, dst[, anchor[, borderType]]]) → dst

结果:

高斯滤波:线性滤波,可以消除高斯噪声,广泛应用于图像处理的减噪过程。高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过 加权平均 后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。

高斯滤波有用但是效率不高。

高斯模糊技术生成的图像,其视觉效果就像是经过一个半透明屏幕在观察图像,这与镜头焦外成像效果散景以及普通照明阴影中的效果都明显不同。高斯平滑也用于计算机视觉算法中的预先处理阶段,以增强图像在不同比例大小下的图像效果(参见尺度空间表示以及尺度空间实现)。从数学的角度来看,图像的高斯模糊过程就是图像与正态分布做卷积。由于正态分布又叫作高斯分布,所以这项技术就叫作高斯模糊。

高斯滤波器是一类根据高斯函数的形状来选择权值的线性平滑滤波器。 高斯平滑滤波器对于抑制服从正态分布的噪声非常有效。

一维零均值高斯函数为: 高斯分布参数 决定了高斯函数的宽度。

高斯噪声的产生

GaussianBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderType]]]) - dst

线性滤波容易构造,并且易于从频率响应的角度来进行分析。

许多情况,使用近邻像素的非线性滤波会得到更好的结果。比如在噪声是散粒噪声而不是高斯噪声,即图像偶尔会出现很大值的时候,用高斯滤波器进行图像模糊时,噪声像素不会被消除,而是转化为更为柔和但仍然可见的散粒。

中值滤波(Median filter)是一种典型的非线性滤波技术,基本思想是用像素点邻域灰度值的中值来代替该像素点的灰度值,该方法在去除脉冲噪声、椒盐噪声『椒盐噪声又称脉冲噪声,它随机改变一些像素值,是由图像传感器,传输信道,解码处理等产生的黑白相间的亮暗点噪声。椒盐噪声往往由图像切割引起。』的同时又能保留图像边缘细节,

中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,其基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点,对于 斑点噪声(speckle noise)和椒盐噪声(salt-and-pepper noise) 来说尤其有用,因为它不依赖于邻域内那些与典型值差别很大的值。中值滤波器在处理连续图像窗函数时与线性滤波器的工作方式类似,但滤波过程却不再是加权运算。

中值滤波在一定的条件下可以克服常见线性滤波器如最小均方滤波、方框滤波器、均值滤波等带来的图像细节模糊,而且对滤除脉冲干扰及图像扫描噪声非常有效,也常用于保护边缘信息, 保存边缘的特性使它在不希望出现边缘模糊的场合也很有用,是非常经典的平滑噪声处理方法。

与均值滤波比较:

说明:中值滤波在一定条件下,可以克服线性滤波器(如均值滤波等)所带来的图像细节模糊,而且对滤除脉冲干扰即图像扫描噪声最为有效。在实际运算过程中并不需要图像的统计特性,也给计算带来不少方便。 但是对一些细节多,特别是线、尖顶等细节多的图像不宜采用中值滤波。

双边滤波(Bilateral filter)是一种非线性的滤波方法,是结合 图像的空间邻近度和像素值相似度 的一种折衷处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。具有简单、非迭代、局部的特点。

双边滤波器的好处是可以做边缘保存(edge preserving),一般过去用的维纳滤波或者高斯滤波去降噪,都会较明显地模糊边缘,对于高频细节的保护效果并不明显。双边滤波器顾名思义比高斯滤波多了一个高斯方差 sigma-d ,它是基于空间分布的高斯滤波函数,所以在边缘附近,离的较远的像素不会太多影响到边缘上的像素值,这样就保证了边缘附近像素值的保存。 但是由于保存了过多的高频信息,对于彩色图像里的高频噪声,双边滤波器不能够干净的滤掉,只能够对于低频信息进行较好的滤波。

运行结果

学习目标:

形态变换是基于图像形状的一些简单操作。它通常在二进制图像上执行。

膨胀与腐蚀实现的功能

侵蚀的基本思想就像土壤侵蚀一样,它会侵蚀前景物体的边界(总是试图保持前景为白色)。那它是做什么的?内核在图像中滑动(如在2D卷积中)。只有当内核下的所有像素都是 1 时,原始图像中的像素( 1 或 0 )才会被视为 1 ,否则它将被侵蚀(变为零)

erode(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) - dst

与腐蚀的操作相反。如果内核下的至少一个像素为“1”,则像素元素为“1”。因此它增加了图像中的白色区域或前景对象的大小增加。通常,在去除噪音的情况下,侵蚀之后是扩张。因为,侵蚀会消除白噪声,但它也会缩小我们的物体。所以我们扩大它。由于噪音消失了,它们不会再回来,但我们的物体区域会增加。它也可用于连接对象的破碎部分

10 个 Python 图像编辑工具

以下提到的这些 Python 工具在编辑图像、操作图像底层数据方面都提供了简单直接的方法。

-- Parul Pandey

当今的世界充满了数据,而图像数据就是其中很重要的一部分。但只有经过处理和分析,提高图像的质量,从中提取出有效地信息,才能利用到这些图像数据。

常见的图像处理操作包括显示图像,基本的图像操作,如裁剪、翻转、旋转;图像的分割、分类、特征提取;图像恢复;以及图像识别等等。Python 作为一种日益风靡的科学编程语言,是这些图像处理操作的最佳选择。同时,在 Python 生态当中也有很多可以免费使用的优秀的图像处理工具。

下文将介绍 10 个可以用于图像处理任务的 Python 库,它们在编辑图像、查看图像底层数据方面都提供了简单直接的方法。

scikit-image 是一个结合 NumPy 数组使用的开源 Python 工具,它实现了可用于研究、教育、工业应用的算法和应用程序。即使是对于刚刚接触 Python 生态圈的新手来说,它也是一个在使用上足够简单的库。同时它的代码质量也很高,因为它是由一个活跃的志愿者社区开发的,并且通过了 同行评审(peer review)。

scikit-image 的 文档 非常完善,其中包含了丰富的用例。

可以通过导入 skimage 使用,大部分的功能都可以在它的子模块中找到。

图像滤波(image filtering):

使用 match_template() 方法实现 模板匹配(template matching):

在 展示页面 可以看到更多相关的例子。

NumPy 提供了对数组的支持,是 Python 编程的一个核心库。图像的本质其实也是一个包含像素数据点的标准 NumPy 数组,因此可以通过一些基本的 NumPy 操作(例如切片、 掩膜(mask)、 花式索引(fancy indexing)等),就可以从像素级别对图像进行编辑。通过 NumPy 数组存储的图像也可以被 skimage 加载并使用 matplotlib 显示。

在 NumPy 的 官方文档 中提供了完整的代码文档和资源列表。

使用 NumPy 对图像进行 掩膜(mask)操作:

像 NumPy 一样, SciPy 是 Python 的一个核心科学计算模块,也可以用于图像的基本操作和处理。尤其是 SciPy v1.1.0 中的 scipy.ndimage 子模块,它提供了在 n 维 NumPy 数组上的运行的函数。SciPy 目前还提供了 线性和非线性滤波(linear and non-linear filtering)、 二值形态学(binary morphology)、 B 样条插值(B-spline interpolation)、 对象测量(object measurements)等方面的函数。

在 官方文档 中可以查阅到 scipy.ndimage 的完整函数列表。

使用 SciPy 的 高斯滤波 对图像进行模糊处理:

PIL (Python Imaging Library) 是一个免费 Python 编程库,它提供了对多种格式图像文件的打开、编辑、保存的支持。但在 2009 年之后 PIL 就停止发布新版本了。幸运的是,还有一个 PIL 的积极开发的分支 Pillow ,它的安装过程比 PIL 更加简单,支持大部分主流的操作系统,并且还支持 Python 3。Pillow 包含了图像的基础处理功能,包括像素点操作、使用内置卷积内核进行滤波、颜色空间转换等等。

Pillow 的 官方文档 提供了 Pillow 的安装说明自己代码库中每一个模块的示例。

使用 Pillow 中的 ImageFilter 模块实现图像增强:

OpenCV(Open Source Computer Vision 库)是计算机视觉领域最广泛使用的库之一, OpenCV-Python 则是 OpenCV 的 Python API。OpenCV-Python 的运行速度很快,这归功于它使用 C/C++ 编写的后台代码,同时由于它使用了 Python 进行封装,因此调用和部署的难度也不大。这些优点让 OpenCV-Python 成为了计算密集型计算机视觉应用程序的一个不错的选择。

入门之前最好先阅读 OpenCV2-Python-Guide 这份文档。

使用 OpenCV-Python 中的 金字塔融合(Pyramid Blending)将苹果和橘子融合到一起:

SimpleCV 是一个开源的计算机视觉框架。它支持包括 OpenCV 在内的一些高性能计算机视觉库,同时不需要去了解 位深度(bit depth)、文件格式、 色彩空间(color space)之类的概念,因此 SimpleCV 的学习曲线要比 OpenCV 平缓得多,正如它的口号所说,“将计算机视觉变得更简单”。SimpleCV 的优点还有:

官方文档 简单易懂,同时也附有大量的学习用例。

文档 包含了安装介绍、示例以及一些 Mahotas 的入门教程。

Mahotas 力求使用少量的代码来实现功能。例如这个 Finding Wally 游戏 :

ITK (Insight Segmentation and Registration Toolkit)是一个为开发者提供普适性图像分析功能的开源、跨平台工具套件, SimpleITK 则是基于 ITK 构建出来的一个简化层,旨在促进 ITK 在快速原型设计、教育、解释语言中的应用。SimpleITK 作为一个图像分析工具包,它也带有 大量的组件 ,可以支持常规的滤波、图像分割、 图像配准(registration)功能。尽管 SimpleITK 使用 C++ 编写,但它也支持包括 Python 在内的大部分编程语言。

有很多 Jupyter Notebooks 用例可以展示 SimpleITK 在教育和科研领域中的应用,通过这些用例可以看到如何使用 Python 和 R 利用 SimpleITK 来实现交互式图像分析。

使用 Python + SimpleITK 实现的 CT/MR 图像配准过程:

pgmagick 是使用 Python 封装的 GraphicsMagick 库。 GraphicsMagick 通常被认为是图像处理界的瑞士军刀,因为它强大而又高效的工具包支持对多达 88 种主流格式图像文件的读写操作,包括 DPX、GIF、JPEG、JPEG-2000、PNG、PDF、PNM、TIFF 等等。

pgmagick 的 GitHub 仓库 中有相关的安装说明、依赖列表,以及详细的 使用指引 。

图像缩放:

边缘提取:

Cairo 是一个用于绘制矢量图的二维图形库,而 Pycairo 是用于 Cairo 的一组 Python 绑定。矢量图的优点在于做大小缩放的过程中不会丢失图像的清晰度。使用 Pycairo 可以在 Python 中调用 Cairo 的相关命令。

Pycairo 的 GitHub 仓库 提供了关于安装和使用的详细说明,以及一份简要介绍 Pycairo 的 入门指南 。

使用 Pycairo 绘制线段、基本图形、 径向渐变(radial gradients):

以上就是 Python 中的一些有用的图像处理库,无论你有没有听说过、有没有使用过,都值得试用一下并了解它们。

via:

作者: Parul Pandey 选题: lujun9972 译者: HankChow 校对: wxy

怎样才可以自学Python呢

对于自学的小伙伴,小蜗这里整理了一份Python全栈开发的学习路线,可按照这份大纲进行一些学习计划,避免多走弯路。

第一阶段:专业核心基础

阶段目标:

1. 熟练掌握Python的开发环境与编程核心知识

2. 熟练运用Python面向对象知识进行程序开发

3. 对Python的核心库和组件有深入理解

4. 熟练应用SQL语句进行数据库常用操作

5. 熟练运用Linux操作系统命令及环境配置

6. 熟练使用MySQL,掌握数据库高级操作

7. 能综合运用所学知识完成项目

知识点:

Python编程基础、Python面向对象、Python高级进阶、MySQL数据库、Linux操作系统。

1、Python编程基础,语法规则,函数与参数,数据类型,模块与包,文件IO,培养扎实的Python编程基本功,同时对Python核心对象和库的编程有熟练的运用。

2、Python面向对象,核心对象,异常处理,多线程,网络编程,深入理解面向对象编程,异常处理机制,多线程原理,网络协议知识,并熟练运用于项目中。

3、类的原理,MetaClass,下划线的特殊方法,递归,魔术方法,反射,迭代器,装饰器,UnitTest,Mock。深入理解面向对象底层原理,掌握Python开发高级进阶技术,理解单元测试技术。

4、数据库知识,范式,MySQL配置,命令,建库建表,数据的增删改查,约束,视图,存储过程,函数,触发器,事务,游标,PDBC,深入理解数据库管理系统通用知识及MySQL数据库的使用与管理。为Python后台开发打下坚实基础。

5、Linux安装配置,文件目录操作,VI命令,管理,用户与权限,环境配置,Docker,Shell编程Linux作为一个主流的服务器操作系统,是每一个开发工程师必须掌握的重点技术,并且能够熟练运用。

第二阶段:PythonWEB开发

阶段目标:

1. 熟练掌握Web前端开发技术,HTML,CSS,JavaScript及前端框架

2. 深入理解Web系统中的前后端交互过程与通信协议

3. 熟练运用Web前端和Django和Flask等主流框架完成Web系统开发

4. 深入理解网络协议,分布式,PDBC,AJAX,JSON等知识

5. 能够运用所学知识开发一个MiniWeb框架,掌握框架实现原理

6. 使用Web开发框架实现贯穿项目

知识点:

Web前端编程、Web前端高级、Django开发框架、Flask开发框架、Web开发项目实战。

1、Web页面元素,布局,CSS样式,盒模型,JavaScript,JQuery与Bootstrap掌握前端开发技术,掌握JQuery与BootStrap前端开发框架,完成页面布局与美化。

2、前端开发框架Vue,JSON数据,网络通信协议,Web服务器与前端交互熟练使用Vue框架,深入理解HTTP网络协议,熟练使用Swagger,AJAX技术实现前后端交互。

3、自定义Web开发框架,Django框架的基本使用,Model属性及后端配置,Cookie与Session,模板Templates,ORM数据模型,Redis二级缓存,RESTful,MVC模型掌握Django框架常用API,整合前端技术,开发完整的WEB系统和框架。

4、Flask安装配置,App对象的初始化和配置,视图函数的路由,Request对象,Abort函数,自定义错误,视图函数的返回值,Flask上下文和请求钩子,模板,数据库扩展包Flask-Sqlalchemy,数据库迁移扩展包Flask-Migrate,邮件扩展包Flask-Mail。掌握Flask框架的常用API,与Django框架的异同,并能独立开发完整的WEB系统开发。

第三阶段:爬虫与数据分析

阶段目标:

1. 熟练掌握爬虫运行原理及常见网络抓包工具使用,能够对HTTP及HTTPS协议进行抓包分析

2. 熟练掌握各种常见的网页结构解析库对抓取结果进行解析和提取

3. 熟练掌握各种常见反爬机制及应对策略,能够针对常见的反爬措施进行处理

4. 熟练使用商业爬虫框架Scrapy编写大型网络爬虫进行分布式内容爬取

5. 熟练掌握数据分析相关概念及工作流程

6. 熟练掌握主流数据分析工具Numpy、Pandas和Matplotlib的使用

7. 熟练掌握数据清洗、整理、格式转换、数据分析报告编写

8. 能够综合利用爬虫爬取豆瓣网电影评论数据并完成数据分析全流程项目实战

知识点:

网络爬虫开发、数据分析之Numpy、数据分析之Pandas。

1、爬虫页面爬取原理、爬取流程、页面解析工具LXML,Beautifulfoup,正则表达式,代理池编写和架构、常见反爬措施及解决方案、爬虫框架结构、商业爬虫框架Scrapy,基于对爬虫爬取原理、网站数据爬取流程及网络协议的分析和了解,掌握网页解析工具的使用,能够灵活应对大部分网站的反爬策略,具备独立完成爬虫框架的编写能力和熟练应用大型商业爬虫框架编写分布式爬虫的能力。

2、Numpy中的ndarray数据结构特点、numpy所支持的数据类型、自带的数组创建方法、算术运算符、矩阵积、自增和自减、通用函数和聚合函数、切片索引、ndarray的向量化和广播机制,熟悉数据分析三大利器之一Numpy的常见使用,熟悉ndarray数据结构的特点和常见操作,掌握针对不同维度的ndarray数组的分片、索引、矩阵运算等操作。

3、Pandas里面的三大数据结构,包括Dataframe、Series和Index对象的基本概念和使用,索引对象的更换及删除索引、算术和数据对齐方法,数据清洗和数据规整、结构转换,熟悉数据分析三大利器之一Pandas的常见使用,熟悉Pandas中三大数据对象的使用方法,能够使用Pandas完成数据分析中最重要的数据清洗、格式转换和数据规整工作、Pandas对文件的读取和操作方法。

4、matplotlib三层结构体系、各种常见图表类型折线图、柱状图、堆积柱状图、饼图的绘制、图例、文本、标线的添加、可视化文件的保存,熟悉数据分析三大利器之一Matplotlib的常见使用,熟悉Matplotlib的三层结构,能够熟练使用Matplotlib绘制各种常见的数据分析图表。能够综合利用课程中所讲的各种数据分析和可视化工具完成股票市场数据分析和预测、共享单车用户群里数据分析、全球幸福指数数据分析等项目的全程实战。

第四阶段:机器学习与人工智能

阶段目标:

1. 理解机器学习相关的基本概念及系统处理流程

2. 能够熟练应用各种常见的机器学习模型解决监督学习和非监督学习训练和测试问题,解决回归、分类问题

3. 熟练掌握常见的分类算法和回归算法模型,如KNN、决策树、随机森林、K-Means等

4. 掌握卷积神经网络对图像识别、自然语言识别问题的处理方式,熟悉深度学习框架TF里面的张量、会话、梯度优化模型等

5. 掌握深度学习卷积神经网络运行机制,能够自定义卷积层、池化层、FC层完成图像识别、手写字体识别、验证码识别等常规深度学习实战项目

知识点:

1、机器学习常见算法、sklearn数据集的使用、字典特征抽取、文本特征抽取、归一化、标准化、数据主成分分析PCA、KNN算法、决策树模型、随机森林、线性回归及逻辑回归模型和算法。熟悉机器学习相关基础概念,熟练掌握机器学习基本工作流程,熟悉特征工程、能够使用各种常见机器学习算法模型解决分类、回归、聚类等问题。

2、Tensorflow相关的基本概念,TF数据流图、会话、张量、tensorboard可视化、张量修改、TF文件读取、tensorflow playround使用、神经网络结构、卷积计算、激活函数计算、池化层设计,掌握机器学习和深度学习之前的区别和练习,熟练掌握深度学习基本工作流程,熟练掌握神经网络的结构层次及特点,掌握张量、图结构、OP对象等的使用,熟悉输入层、卷积层、池化层和全连接层的设计,完成验证码识别、图像识别、手写输入识别等常见深度学习项目全程实战。


网站栏目:关于python函数实现卷积的信息
浏览地址:http://dzwzjz.com/article/doesddp.html
在线咨询
服务热线
服务热线:028-86922220
TOP