大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
Imports System
网站建设哪家好,找创新互联!专注于网页设计、网站建设、微信开发、微信平台小程序开发、集团企业网站建设等服务项目。为回馈新老客户创新互联还提供了卫东免费建站欢迎大家使用!
Imports System.Threading
Public Class Form1
Dim TestThread1, TestThread2 As Thread
Public Sub TestMethod1()
Dim i As Integer
i = 0
While (i 1000)
Label1.Text = i
i += 1
End While
End Sub
Public Sub TestMethod2()
Dim i As Integer
i = 0
While (i 1000)
Label2.Text = i
i += 1
End While
End Sub
Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click
Control.CheckForIllegalCrossThreadCalls = False
TestThread1 = New Thread(New ThreadStart(AddressOf TestMethod1))
TestThread1.Start()
End Sub
Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button2.Click
Control.CheckForIllegalCrossThreadCalls = False
TestThread2 = New Thread(New ThreadStart(AddressOf TestMethod2))
TestThread2.Start()
End Sub
Private Sub Button3_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button3.Click
Control.CheckForIllegalCrossThreadCalls = False
TestThread1 = New Thread(New ThreadStart(AddressOf TestMethod1))
TestThread2 = New Thread(New ThreadStart(AddressOf TestMethod2))
TestThread1.Start()
TestThread2.Start()
End Sub
End Class
1 生成txt文件。
DimSaveFileDialog1AsNewSaveFileDialog() '创建一个保存对话框
SaveFileDialog1.Filter ="txt files (*.txt)|*.txt" '设置扩展名
IfSaveFileDialog1.ShowDialog() = System.Windows.Forms.DialogResult.OKThen '如果确定保存
My.Computer.FileSystem.WriteAllText(SaveFileDialog1.Filename, Textbox1.Text,False) '保存文本,False表示不追加文本,直接覆盖其内容
EndIf
原文链接:
图像二值化的目的是最大限度的将图象中感兴趣的部分保留下来,在很多情况下,也是进行图像分析、特征提取与模式识别之前的必要的图像预处理过程。这个看似简单的问题,在过去的四十年里受到国内外学者的广泛关注,产生了数以百计的阈值选取方法,但如同其他图像分割算法一样,没有一个现有方法对各种各样的图像都能得到令人满意的结果。
本文针对几种经典而常用的二值发放进行了简单的讨论并给出了其vb.net 实现。
1、P-Tile法
Doyle于1962年提出的P-Tile (即P分位数法)可以说是最古老的一种阈值选取方法。该方法根据先验概率来设定阈值,使得二值化后的目标或背景像素比例等于先验概率,该方法简单高效,但是对于先验概率难于估计的图像却无能为力。
2、OTSU 算法(大津法)
OSTU算法可以说是自适应计算单阈值(用来转换灰度图像为二值图像)的简单高效方法。1978 OTSU年提出的最大类间方差法以其计算简单、稳定有效,一直广为使用。
3、迭代法(最佳阀值法)
(1). 求出图象的最大灰度值和最小灰度值,分别记为Zl和Zk,令初始阈值为:
(2). 根据阈值TK将图象分割为前景和背景,分别求出两者的平均灰度值Z0和ZB:
式中,Z(i,j)是图像上(i,j)点的象素值,N(i,j)是(i,j)点的权值,一般取1。
(3). 若TK=TK+1,则所得即为阈值,否则转2,迭代计算。
4、一维最大熵阈值法
它的思想是统计图像中每一个灰度级出现的概率 ,计算该灰度级的熵 ,假设以灰度级T分割图像,图像中低于T灰度级的像素点构成目标物体(O),高于灰度级T的像素点构成背景(B),那么各个灰度级在本区的分布概率为:
O区: i=1,2……,t
B区: i=t+1,t+2……L-1
上式中的 ,这样对于数字图像中的目标和背景区域的熵分别为:
对图像中的每一个灰度级分别求取W=H0 +HB,选取使W最大的灰度级作为分割图像的阈值,这就是一维最大熵阈值图像分割法。