大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
CIM的起源
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:空间域名、网站空间、营销软件、网站建设、澄江网站维护、网站推广。
从上世纪90年代开始,中国的城市管理信息化领域引入了GIS技术作为基础工具,并以此提出了城市网格化管理的理念,缓解了城市管理粗放、公共领域缺少管理的局面,取得了良好的效果,极大推进了城市管理精细化和规范化。城市管理者们在城市网络基础上,将城市信息进行业务化分类,为城市信息的融合奠定了基础,并开始地理信息共享平台的探索与建设。
从2010年开始,城市信息化的概念也由"数字城市”向“智慧城市”升级,首先是 3DGIS技术发展迅速,城市的空间表达由二维向三维化升级,通过3DGIS展现城市立体全貌,提供一个比二维地图更加精细的时空应用支撑。城市信息关联到精细的三维对象上,为多个行业提供了更加直观与精细的应用场景。
在应用维度升级的同时,随着行业应用的深入和信息采集维度的丰富,行业应用逐步由单个应用向跨业务的综合应用发展,应急救援等需要整合多个行业信息的综合业务也可以快速构建,而支撑多行业综合应用的时空信息云平台也成为城市建设的新热点和新方向。
近年来,随着物联网、大数据技术的兴起,信息资产已经成为社会管理的核心,城市智慧化的管理愈发需要跨部门、跨领域的信息融合。无论在城市生活还是城市管理中,能够支撑信息融合与信息挖掘的技术也愈发重要,城市的规划、建设、运营都将基于新的信息技术,围绕信息的采集、融合和应用而呈现新的发展动力与发展模式。
CIM城市信息模型概念
信息的实时性提高与智能化程度提升,都推动城市由物理世界向虚拟世界映射,数字驱动实体向着新的发展方向前进。城市信息化形成全要素采集、全专业建模、全生命周期管理、全空间数字化管理、全场景支撑的建设理念,城市信息模型(City Information Modeling,CIM) 的概念也正是在这样的行业发展中被提出。
政策依据
2021年3月,《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》第十六章中提出,“完善城市信息模型平台和运行管理服务平台,构建城市数据资源体系,推进城市数据大脑建设。探索建设数字孪生城市。”明确提出了数字城市建设中要重点发展城市信息模型平台与数字孪生城市,CIM建设成为国家城市治理体系和治理能力现代化的目标和方向之一。
国家各部委近年来也发布政策标准,引导城市信息模型平台的建设落地。
2019年9月,住房和城乡建设部、工业和信息化部和中央网信办联合颁布《关于开展城市信息模型(CIM)基础平台建设的指导意见》,对CIM基础平台建设的定位、建设原则、建设目标、建设内容、运营维护和服务保障等工作进行了全方位的指导。
2020年3月,发改委发布了《加快培育新型消费实施方案》,将CIM定义为新一代信息基础设施建设,要推动城市信息模型(CIM)基础平台建设,支持城市规划建设管理多场景应用,促进城市基础设施数字化和城市建设数据汇聚。
2020年9月,自然资源部发布了《市级国土空间总体规划编制指南(试行)》,在文中提出“……基于国土空间基础信息平台,探索建立城市信息模型(CIM)和城市时空感知系统,促进智慧规划和智慧城市建设,提高国土空间精治、共治、法治水平”。
2020年9月27日,住建部发布《城市信息模型(CIM)基础平台技术导则》作为行业CIM基础平台建设的技术依据。
2021年4月,住建部分别就CIM基础平台建设中的数据加工、规划管理、工程报批、施工图审查、竣工验收备案等方面发布了相应标准规范的征求意见稿,对CIM平台建设提供了行业标准的参照与保障。
一、CIM基础平台的特点与价值
CIM目前重要的建设内容,是通过构建一个基于三维数字空间的现实城市数字化版本,成为连接城市现实世界与数字虚拟世界的桥梁。为城市提供全空间、全要素、全专业、全流程和全生命周期的城市数字化管理能力。这个数字化的版本,称为CIM基础平台,也是未来新一代信息基础设施。
(一)CIM基础平台的特点
传统的GIS技术支撑建设的数字城市,其城市信息管理粒度最大到城市的大型部件。CIM基础平台引入BIM信息后,城市信息管理的粒度从建筑整体延伸到了建筑构件,从而能够构建从城市宏观布局到微观部件的完整全面的城市信息框架,为城市精细化治理提供了数据基础。
住建部发行的《城市信息模型基础平台技术标准》中对CIM进行了明确的定义:城市信息模型,是以建筑信息模型(BIM)、数字孪生(Digital Twin)、地理信息系统(GIS)、物联网(IoT)等技术为基础,整合城市地上地下、室内室外、历史现状未来多维信息模型数据和城市感知数据,构建起三维数字空间的城市信息有机综合体。
三维数字空间城市信息有机综合体,就是将 BIM 在建筑领域设计、施工、运营一体化的全生命周期管理的理念应用到城市中,将以 BIM 技术提供的城市微观信息与 GIS 技术为基础的城市宏观场景信息进行融合,并将城市交通、人群、资金等等动态信息进行结构化整合,形成一个能够同步反映城市完整现状,并且对城市发展进行预测与研究的信息巨系统。
(二)CIM基础平台的价值
1.CIM是空间智慧引导城市发展的切入点
CIM通过支撑构建数字化虚拟城市,实现对物理城市的映射、监管、分析和模拟,是我国数字社会建设中数字驱动发展的建设理念的具体落地实现。
借助对空间对象的分析与挖掘能力,CIM在数字空间中构建城市的信息化模型,通过空间技术对信息的分析、挖掘,能够在数字空间中对现实世界的状态发展、变化趋势、管理响应等进行判断与预测,从而能够准确地把握城市发展,指导制定城市运维管理政策与手段,减少现实中的试错成本,实现将数字成果映射到现实世界,再将数字成果反哺现实世界的双向驱动,达到城市数字驱动发展的战略目标。
2.城市现代化治理需要CIM的空间智慧服务
城市现代化治理中数字治理能力建设是核心和关键。数字治理能力是面向城市不同管理领域、管理模式和管理手段的信息化能力的全面升级,利用数字技术通过对城市信息的采集、存储、计算和程序,实现监控城市运行状态,预测城市发展动向,维护城市稳定运行。
城市数字治理能力的核心是城市空间数字化能力的构建,而CIM建设是城市空间数字化能力的基础支撑与具体实践。CIM平台的总体建设目标,是通过构建城市基础设施数字化资源库,城市设施与业务建模,城市时空信息分析与挖掘能力,在统一的框架下实现城市信息共享互通,支撑城市跨部门、跨层级、跨区域的整理能力,为城市现代化治理提供城市空间的全面表达能力,城市信息挖掘的空间分析计算能力,提升城市治理的数字化水平,最终服务于城市现代化治理的总体目标。
二、CIM基础平台生命力的“3-4-5”
(一)三项关键技术
BIM+GIS+IoT是CIM平台建设的基础能力支撑。
GIS提供城市大尺度空间内的地形地貌、构造布局信息的管理与应用能力,BIM提供城市微观尺度下的部件与构件信息的构造与管理能力。通过 BIM+GIS,整合城市地上 / 地下、室 内 / 室外的空间数据体系,实现宏观 / 微观一体化的管理、展现与分析应用,结合 IoT 技术对城市信息的多维度实时采集,实现历史现状未来多维多尺度信息模型数据和城市感知数据和融合,最终构建起三维数字空间的城市信息有机综合体,并依此推动城市规划、建造、管理的新模式。
(二)四项创新理念
CIM平台是城市数字治理现代化管理理念的落地和创新。
1.城市信息集成创新,通过构建城市全生命周期的数据,记录与挖掘城市成长信息,形成跨行业、跨领域的城市信息集成新模式与新理念。
2.城市状态表达创新,通过构建城市全时空数据模型,让城市多维度信息能够在三维数字空间中进行融合,实现城市信息的新的表达形式。
3.城市管理方法创新,通过采集构建城市全要素、全专业数据,为城市搭建“建-管-养-运”的信息化模型与业务规则,实现城市数字化精确管控。
4.城市信息共享创新,通过采集城市运营全过程数据,支撑成果管理各项业务的开发与协同,促进城市支持信息的全面开放。
(三)五项核心能力
在关键技术支撑和创新理念的指导下,CIM形成聚合、表达、服务、呈现与分析5项核心能力,为城市数字孪生建设提供了基础和支撑:
1.全要素数字化表达能力:对城市空/天/地、室内/室外、 地上/地下的全要素采集、数字化建库,实现二三维一体化、时空一体化城市数字底板。
2.数据融合与建模能力:在城市全要素数字化基础上,以城市时空数据为主要索引,建立跨行业数据模型,实现城市全要素、全过程、一体化的时空数据体系。
3.可视化呈现能力:对城市全貌大场景到城市细节的一体化多级别渲染;提供空间分析、大数据分析、仿真结果等多主体可视化能力,支持大屏、网页、移动端等多种显示场景。
4.空间分析计算能力:是指基于城市三维模型,针对具体业务指标建立分析模型,进行空间数据相关计算、分析、展示的能力。
5.数据服务共享能力:基于CIM的全要素时空数据资源和跨行业建模与分析能力,以数据信息服务的方式提供各业务使用,支持更为精确全面的呈现和表达,更准确地实现动态监测、趋势预判等功能。
三项关键技术与四项创新理念,形成了CIM五项基础核心能力,为城市管理数字化与智慧化提供持续的生命力。
1.BIM模型维护
BIM模型维护是指根据项目建设进度建立和维护BIM模型,使用BIM平台汇总各项目团队所有的建筑工程信息,消除项目中的信息孤岛,并将得到的信息结合三维模型进行整理和储存,以备项目全过程中项目各相关利益方随时共享。目前业内主要采用“分布式”BIM模型的方法,建立符合工程项目现有条件和使用用途的BIM模型。这些模型根据需要大致可分为:设计模型、施工模型、进度模型、成本模型、制造模型、操作模型等。
2.场地分析
传统的场地分析存在诸如定量分析不足、主观因素过重、无法处理大量数据信息等弊端。通过BIM结合地理信息系统(简称GIS)对场地及拟建的建筑物空间数据进行建模,可迅速得出较准确的分析结果,帮助项目在规划阶段评估场地的使用条件和特点,从而作出新建项目理想的场地规划、交通流线组织关系、建筑布局等关键决策。
3.建筑策划
利用对建设目标所处社会环境及相关因素的逻辑数理分析,研究项目任务书对设计的合理导向,制定和论证建筑设计依据,科学地确定设计的内容,并寻找达到这一目标的科学方法。BIM能够帮助项目团队再建筑规划阶段,通过多空间进行分析来理解复杂空间的标准和法规,从而节省时间,并提供对团队更多增值活动的可能。特别是在客户讨论需求、选择以及分析最佳方案时,能借助BIM及相关分析数据,作出关键性的决定。
4.方案论证
项目投资方可以使用BIM来估计设计方案的布局、视野、照明、安全、人体工程学、声学、纹理、色彩及规范的遵守情况。BIM甚至可以做到建筑局部的细节推敲,迅速分析设计和施工中可能需要应对的问题。还可以借助BIM提供方便的、低成本的不同解决方案供项目投资方进行选择,通过数据对比和模拟分析,找出不同解决方案的优缺点,帮助项目投资方迅速评估建筑投资方案的成本和时间。
5.可视化设计
对于设计师而言,除了用于前期推敲和阶段展现,大量的设计工作还是要基于传统CAD平台,使用平、立、剖等三视图的方式表达来展现自己的设计成果。BIM的出现使得设计师不仅拥有了三维可视化设计工具,所见即所得,更重要的是通过工具的提升,使设计师能使用三维的思考方式来完成建筑设计,同时,也使业主及最终用户真正摆脱技术壁垒的限制,随时知道自己的投资能获得什么。
6.协同设计
协同设计是一种新兴的建筑设计方式,它可以使分布在不同地理位置的不同专业的设计人员通过网络的协同展开设计工作。现有的协同设计主要是基于CAD平台,CAD的通用文件格式仅仅是对图形的描述,无法加载附加信息。BIM使得协同不再是简单的文件参照,BIM技术为协同设计提供底层支撑,大幅提升协同设计的技术含量。借助BIM的技术优势,协同的范畴也从单纯的设计阶段扩展到建筑全生命周期,需要规划、设计、施工、运营等各方的集体参与,因此具备了更广泛的意义,带来综合效益的大幅提升。
7.性能化分析
利用BIM技术,在设计过程中创建的虚拟建筑模型已经包含了大量的设计信息(几何信息、材料性能、构件属性等),只要将模型导入相关的性能化分析软件,就可以得到相应的分析结果,原本需要专业人士花费大量时间输入大量专业数据的过程,通过BIM技术可以自动完成,大大降低了性能化分析的周期,提高了设计质量。
8.工程量统计
BIM 是一个富含工程信息的数据库,可以真实地提供造价管理需要的工程量信息,借助这些信息,计算机可以快速对各种构件进行统计分析,大大减少了繁琐的人工操作和潜在错误,非常容易实现工程量信息与设计方案的完全一致。
9.管线综合
随着建筑物规模和使用功能复杂程度的增加,无论设计企业还是施工企业甚至是业主对机电管线综合的要求愈加强烈。利用BIM技术,通过搭建各专业的BIM模型,设计师能够在虚拟的三维环境下方便地发现设计中的碰撞冲突,从而大大提高了管线综合的设计能力和工作效率。这不仅能及时排除项目施工环节中可能遇到的碰撞冲突,显著减少由此产生的变更申请单,更大大提高了施工现场的生产效率,降低了由于施工协调造成的成本增长和工期延误。
10.施工进度模拟
通过将BIM与施工进度计划相链接,将空间信息与时间信息整合在一个可视的4D(3D+Time)模型中,可以直观、精确地反映整个建筑的施工过程。4D施工模拟技术可以在项目建造过程中合理制定施工计划、精确掌握施工进度,优化使用施工资源以及科学地进行场地布置,对整个工程的施工进度、资源和质量进行统一管理和控制,达到以缩短工期、降低成本、提高质量的目标。
11.施工组织模拟
通过BIM可以对项目的重点或难点部分进行可建性模拟,按月、日、时进行施工安装方案的分析优化。对于一些重要的施工环节或采用新施工工艺的关键部位、施工现场平面布置等施工指导措施进行模拟和分析,以提高计划的可行性;也可以利用BIM技术结合施工组织计划进行预演以提高复杂建筑体系的可造性。
12.数字化建造
BIM模型直接应用于制造环节,建筑中的许多构件可以异地加工,然后运到建筑施工现场,装配到建筑中(例如门窗、预制混凝土结构和钢结构等构件)。通过数字化建造,可以自动完成建筑物构件的预制,这些通过工厂精密机械技术制造出来的构件不仅降低了建造误差,并且大幅度提高构件制造的生产率,使得整个建筑建造的工期缩短并且容易掌控。
13.建筑系统分析
BIM结合专业的建筑物系统分析软件,避免了重复建立模型和采集系统参数。可以验证建筑物是否按照特定的设计规定和可持续标准建造,通过这些分析模拟,最终确定、修改系统参数甚至系统改造计划,以提高整个建筑的性能。
14.资产管理
由于建筑施工和运营的信息割裂,使得这些资产信息需要在运营初期依赖大量的人工操作来录入,而且很容易出现数据录入错误。BIM中包含的大量建筑信息能够顺利导入资产管理系统,大大减少了系统初始化在数据准备方面的时间及人力投入。由于传统的资产管理系统本身无法准确定位资产位置,通过BIM结合RFID的资产标签芯片还可以使资产在建筑物中的定位及相关参数信息一目了然。
15.灾难应急模拟
利用BIM及相应灾害分析模拟软件,可以在灾害发生前模拟灾害发生的过程,分析灾害发生的原因,制定避免灾害发生的措施以及发生灾害后人员疏散、救援支持的应急预案。
16.竣工模型交付
通过BIM与施工过程记录信息的关联,甚至能够实现包括隐蔽工程资料在内的竣工信息集成,不仅为后续的物业管理带来便利,并且可以在未来进行的翻新、改造、扩建过程中为业主及项目团队提供有效的历史信息。
智慧工地的关键技术包括:数据交换标准技术、BIM技术、可视化技术、3S技术、虚拟现实技术、数字化施工系统。
1、数据交换标准技术
要实现智慧工地,就必须要做到不同项目成员之间、不同软件产品之间的信息数据交换。由于这种信息交换涉及的项目成员种类繁多、项目阶段复杂且项目生命周期时间跨度大、以及应用软件产品数量众多,只有建立一个公开的信息交换标准,才能使所有软件产品通过这个公开标准实现互相之间的信息交换,才能实现不同项目成员和不同应用软件之间的信息流动。这个基于对象的公开信息交换标准格式包括定义信息交换的格式、定义交换信息、确定交换的信息和需要的信息是同一个东西三种标准。
2、BIM技术
BIM技术在建筑物使用寿命期间可以有效地进行运营维护管理,BIM技术具有空间定位和记录数据的能力,将其应用于运营维护管理系统,可以快速准确定位建筑设备组件。对材料进行可接入性分析,选择可持续性材料,进行预防性维护,制定行之有效的维护计划。BIM与RFID技术结合,将建筑信息导入资产管理系统,可以有效地进行建筑物的资产管理。BIM还可进行空间管理,合理高效使用建筑物空间。
3、可视化技术
可视化技术能够把科学数据,包括测量获得的数值、现场采集的图像或是计算中涉及、产生的数字信息变为直观的、以图形图像信息表示的、随时间和空间变化的物理现象或物理量呈现在管理者面前,使他们能够观察、模拟和计算。该技术是智慧工地能够实现三维展现的前提。
4、3S技术
是遥感技术(Remotesensing,RS)、地理信息系统(Geographyinformationsystems,GIS)和全球定位系统(Globalpositioningsystems,GPS)的统称,是空间技术、传感器技术、卫星定位与导航技术和计算机技术、通讯技术相结合,多学科高度集成的对空间信息进行采集、处理、管理、分析、表达、传播和应用的现代信息技术,是智慧工地成果的集中展示平台。
5、虚拟现实技术
虚拟现实(VirtualReality,VR)是利用计算机生成一种模拟环境,通过多种传感设备使用户“沉浸”到该环境中,实现用户与该环境直接进行自然交互的技术。它能够让应用BIM的设计师以身临其境的感觉,能以自然的方式与计算机生成的环境进行交互操作,而体验比现实世界更加丰富的感受。
6、数字化施工系统
数字化施工系统是指依托建立数字化地理基础平台、地理信息系统、遥感技术、工地现场数据采集系统、工地现场机械引导与控制系统、全球定位系统等基础平台,整合工地信息资源,突破时间、空间的局限,而建立一个开放的信息环境,以使工程建设项目的各参与方更有效地进行实时信息交流,利用BIM模型成果进行数字化施工管理。
扩展资料:
智慧工地建设的意义:
建设智慧工地在实现绿色建造、引领信息技术应用、提升社会综合竞争力等方面具有重要意义。
智慧工地爆发对价值构成重估。
智慧工地打开百亿级市场新空间:作为广义上的工地信息化,智慧工地以“美丽中国”和“新型城镇化”为大背景,深耕施工阶段的千万级客户群体和百亿级信息化空白市场,以工地大模型 、工地大数据 、工地大协同 、应用碎片化为标准,积极布局钢筋翻样、精细管理、材料管理等成熟领域,开拓三维工地、模架产品、劳务验收、云资料等孵化产品,并计划延伸到智能安全帽、工地平板等施工业务硬件领域。成熟产品以端销售为主,孵化产品会走租赁模式。
参考资料:百度百科-智慧工地
BIM技术的十种典型应用1.BIM模型维护根据项目建设进度建立和维护BIM模型,实质是使用BIM平台汇总各项目团队所有的建筑工程信息,消除项目中的信息孤岛,并将得到的信息结合三维模型进行整理和储存,以备项目全过程中各相关利益方随时共享。由于BIM的用途决定了BIM模型细节的精度,同时仅靠一个BIM工具并不能完成所有工作,所以目前业内主要采用“分布式”BIM模型方法,建立符合工程项目现有条件和使用用途的BIM模型。BIM“分布式”模型还体现在BIM模型往往由相关设计单位、施工单位或运营单位根据各自工作范围单独建立,最后通过统一的标准合成。这将增加对BIM建模标准、版本管理、数据安全的管理难度,因此有时业主也会委托独立的BIM服务商统一规划、维护和管理整个工程项目的BIM应用,确保BIM模型信息的准确、时效和安全。
2.场地分析场地分析是研究影响建筑物定位的主要因素,是确定建筑物的空间方位和外观、建立建筑物与周围景观联系的过程。在规划阶段,场地地貌、植被、气候条件都是影响设计决策的重要因素,往往需要通过场地分析对景观规划、环境现状、施工配套及建成后交通流量等各种影响因素进行评价及分析。传统场地分析存在诸如定量分析不足、主观因素过重、无法处理大量数据信息等弊端,通过BIM结合地理信息系统(GIS),对场地及拟建的建筑物空间数据进行建模,通过BIM及GIS软件的强大功能,迅速得出令人信服的分析结果,帮助项目在规划阶段评估场地的使用条件和特点,从而做出新建项目最理想的场地规划、交通流线组织关系、建筑布局等关键决策。3.建筑策划建筑策划是在总体规划目标确定后,根据定量分析得出设计依据的过程。相对于根据经验确定设计内容及依据(设计任务书)的传统方法,建筑策划利用对建设目标所处社会环境及相关因素的逻辑数理分析,研究项目任务书对设计的合理导向,制定和论证建筑设计依据,科学确定设计内容,并寻找达到这一目标的科学方法。在这一过程中,除了需要运用建筑学原理,借鉴过去经验和遵守规范,更重要的是要以实态调查为基础,用计算机等现代化手段对目标进行研究。BIM能够帮助项目团队在建筑规划阶段通过对空间进行分析来理解复杂空间的标准和法规,从而节省时间,提供对团队更多增值活动的可能。特别是在客户讨论需求、选择及分析最佳方案时,能借助BIM及相关分析数据,做出关键性的决定。BIM在建筑策划阶段的应用成果还会帮助建筑师在建筑设计阶段随时查看初步设计是否符合业主要求,是否满足建筑策划阶段得到的设计依据,通过BIM连贯的信息传递或追溯,大大减少以后详图设计阶段发现不合格需要修改设计的巨大浪费。4.方案论证在方案论证阶段,项目投资方可以使用BIM来评估设计方案的布局、视野、照明、安全、人体工程学、声学、纹理、色彩及规范的遵守情况。BIM 甚至可以做到建筑局部的细节推敲,迅速分析设计和施工中可能需要应对的问题。方案论证阶段还可借助BIM提供方便、低成本的不同解决方案供项目投资方选择,通过数据对比和模拟分析,找出不同解决方案的优缺点,帮助项目投资方迅速评估建筑投资方案的成本和时间。对设计师来说,通过BIM来评估所设计的空间,可获得较高的互动效应,以便从使用者和业主处获得积极反馈。设计的实时修改往往基于最终用户的反馈,在BIM平台下,项目各方关注的焦点问题比较容易得到直观展现并迅速达成共识,相应的需要决策时间也会比以往减少。5.可视化设计3Dmax、Sketchup这些三维可视化设计软件的出现有力弥补了业主及最终用户因缺乏对传统建筑图纸的理解能力而造成的和设计师之间的交流鸿沟,但由于这些软件设计理念和功能上的局限,使得这样的三维可视化展现不论用于前期方案推敲还是阶段性效果图展现,与真正的设计方案之间都存在相当大的差距。BIM的出现使得设计师不仅拥有三维可视化的设计工具,所见即所得,更重要的是通过工具的提升,使设计师能使用三维的思考方式完成建筑设计,同时也使业主及最终用户真正摆脱技术壁垒限制,随时知道自己的投资能获得什么。可视化即“所见所得”的形式,对于建筑行业来说,可视化的真正运用在建筑业的作用是非常大。对于一般简单的东西来说,想象也未尝不可,但现在建筑业的建筑形式各异,复杂造型不断推出,光靠人脑去想象不太现实。所以BIM提供了可视化的思路,让人们将以往的线条式构件形成一种三维的立体实物图形;现在建筑业也有设计方面出效果图的事情,但这种效果图是分包给专业效果图制作团队进行识读设计制作出的线条式信息制作出来的,并不是通过构件的信息自动生成,缺少同构件间的互动性和反馈性。然而BIM提到的可视化是一种能够同构件之间形成互动性和反馈性的可视,在BIM模型中,由于整个过程都是可视化,可视化结果不仅可用来效果图展示及报表生成,更重要的是,项目设计、建造、运营过程中的沟通、讨论、决策都在可视化的状态下进行。6.协同设计协同设计是一种新兴的建筑设计方式,可使分布在不同地理位置的不同专业设计人员通过网络的协同展开设计工作。协同设计是在建筑业环境发生深刻变化、建筑传统设计方式必须得到改变的背景下出现的,也是数字化建筑设计技术与快速发展的网络技术相结合的产物。现有协同设计主要是基于CAD平台,并不能充分实现专业间的信息交流,这是因为CAD的通用文件格式仅仅是对图形的描述,无法加载附加信息,导致专业间的数据不具有关联性。BIM的出现使协同已经不再是简单的文件参照,BIM技术为协同设计提供底层支撑,大幅提升协同设计的技术含量。借助BIM的技术优势,协同范畴也从单纯设计阶段扩展到建筑全生命周期,需要规划、设计、施工、运营等各方的集体参与,具备了更广泛的意义,从而带来综合效益的大幅提升。7.性能化分析利用计算机进行建筑物理性能化分析始于20世纪60年代甚至更早,早已形成成熟的理论支持,开发出丰富的工具软件。但是在CAD时代,无论什么样的分析软件都必须通过手工方式输入相关数据才能开展分析计算,而操作和使用这些软件不仅需要专业技术人员经过培训,同时由于设计方案的调整,造成原本就耗时耗力的数据录入工作需要经常性的重复录入或校核,导致包括建筑能量分析在内的建筑物理性能化分析通常被安排在设计最终阶段,成为一种象征性工作, 使建筑设计与性能化分析计算严重脱节。利用BIM技术,建筑师在设计过程中创建的虚拟建筑模型已经包含了大量设计信息(几何信息、材料性能、构件属性等),只要将模型导入相关性能化分析软件,就可得到相应的分析结果,原本需要专业人士花费大量时间输入大量专业数据的过程,如今可以自动完成,大大降低性能化分析的周期,提高了设计质量,同时也使设计公司能够为业主提供更专业的技能和服务。8.工程量统计在CAD时代,由于CAD无法存储可以让计算机自动计算工程项目构件的必要信息,需要依靠人工根据图纸或CAD文件进行测量和统计,或使用专门造价计算软件根据图纸或CAD文件重新进行建模后由计算机自动进行统计。前者不仅需要消耗大量人工,且比较容易出现手工计算带来的差错;后者同样需要不断根据调整后的设计方案及时更新模型,如果滞后,得到的工程量统计数据也往往失效。BIM是一个富含工程信息的数据库,可真实提供造价管理需要的工程量信息,借助这些信息,计算机可以快速对各种构件进行统计分析,大大减少繁琐的人工操作和潜在错误,非常容易实现工程量信息与设计方案的完全一致。通过BIM获得的准确工程量统计可用于前期设计过程的成本估算、在业主预算范围内不同设计方案的探索或不同设计方案建造成本的比较,以及施工开始前的工程量预算和施工完成后的工程量决算。9.管线综合随着建筑物规模和使用功能复杂程度的增加,无论设计企业。还是施工企业甚至是业主,对机电管线综合的要求愈加强烈。在CAD时代,设计企业主要由建筑或机电专业牵头,将所有图纸打印成硫酸图,然后各专业将图纸叠在一起进行管线综合,由于二维图纸的信息缺失及缺失直观的交流平台,导致管线综合成为建筑施工前让业主最不放心的技术环节。利用BIM技术,通过搭建各专业的BIM模型,设计师能够在虚拟三维环境下方便发现设计中的碰撞冲突,从而大大提高管线综合的设计能力和工作效率。这不仅能及时排除项目施工环节中可以遇到的碰撞;显著减少由此产生的变更申请单,更大大提高施工现场的生产效率,降低由于施工协调造成的成本增长和工期延误。10.施工进度模拟建筑施工是一个高度动态的过程,随着建筑工程规模不断扩大,复杂程度不断提高,使得施工项目管理变得极为复杂。当前建筑工程项目管理中经常用于表示进度计划的甘特图,由于专业性强、可视化程度低,无法清晰描述施工进度及各种复杂关系,难以准确表达工程施工的动态变化过程。通过将BIM与施工进度计划相链接,将空间信息与时间信息整合在一个可视的4D(3D+Time)模型中,可以直观、精确反映整个建筑的施工过程。施工模拟技术可在项目建造过程中合理制定施工计划、4D精确掌握施工进度,优化使用施工资源及科学进行场地布置, 对整个工程施工进度、资源和质量进行统一管理和控制,缩短工期、降低成本、提高质量。此外借助4D模型,施工企业在工程项目投标中将获得竞标优势,BIM可协助评标老师从4D模型中很快了解投标单位对投标项目主要施工控制方法、施工安排是否均衡、总体计划是否基本合理等,从而对投标单位的施工经验和实力作出有效评估。