大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
将数组归一化
创新互联是网站建设技术企业,为成都企业提供专业的成都网站制作、成都网站建设、外贸营销网站建设,网站设计,网站制作,网站改版等技术服务。拥有十载丰富建站经验和众多成功案例,为您定制适合企业的网站。十载品质,值得信赖!
归一化:将一组数据变化到某个固定区间中,通常,这个区间是[0,1],广义的讲,可以是各种区间,比如映射到[0,1]一样可以继续映射到其他范围,图像中可能会映射到[0,255],其他情况可能映射到[-1,1]。
数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间。在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。最典型的就是数据的归一化处理,即将数据统一映射到(0,1]区间上
(1)0-1标准化
将数据的最大最小值记录下来,并通过max-min作为基数(即min=0,max=1)进行数据的归一化处理
x=(x - min) / (max - min)
(2)Z-score标准化
Z分数(z-score),是一个分数与平均数的差再除以标准差的过程 → z=(x-μ)/σ,其中x为某一具体分数,μ为平均数,σ为标准差
Z值的量代表着原始分数和母体平均值之间的距离,是以标准差为单位计算。在原始分数低于平均值时Z则为负数,反之则为正数
数学意义:一个给定分数距离平均数多少个标准差?
目测是autonorm.py中lin 17 normdataset=zeros(shape(dataset)) 这一句 shape(dataset)返回的是元组,但是zeros( args )需要的是整形参数,做个类型转换就ok了