大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
Python-for-data-重新采样和频率转换
十多年的镇赉网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。全网营销推广的优势是能够根据用户设备显示端的尺寸不同,自动调整镇赉建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。成都创新互联公司从事“镇赉网站设计”,“镇赉网站推广”以来,每个客户项目都认真落实执行。
重新采样指的是将时间序列从一个频率转换到另一个频率的过程。
但是也并不是所有的采样方式都是属于上面的两种
pandas中使用resample方法来实现频率转换,下面是resample方法的参数详解:
将数据聚合到一个规则的低频上,例如将时间转换为每个月,"M"或者"BM",将数据分成一个月的时间间隔。
每个间隔是半闭合的,一个数据只能属于一个时间间隔。时间间隔的并集必须是整个时间帧
默认情况下,左箱体边界是包含的。00:00的值是00:00到00:05间隔内的值
产生的时间序列按照每个箱体左边的时间戳被标记。
传递span class="mark"label="right"/span可以使用右箱体边界标记时间序列
向loffset参数传递字符串或者日期偏置
在金融数据中,为每个数据桶计算4个值是常见的问题:
通过span class="girk"ohlc聚合函数/span能够得到四种聚合值列的DF数据
低频转到高频的时候会形成缺失值
ffill() :使用前面的值填充, limit 限制填充的次数
使用 Python 和麦克风进行语音数据采集的流程可能包括以下步骤:
安装并导入相应的库:需要安装并导入 PyAudio 库,这个库可以让你在 Python 中操作麦克风。
打开麦克风:使用 PyAudio 库打开麦克风,并设置采样率,采样位数等参数。
开始录音:使用 PyAudio 库的 read 方法从麦克风中读取语音数据。
存储数据:使用 Python 的文件操作函数将读取到的语音数据存储到本地磁盘上。
关闭麦克风:使用 PyAudio 库关闭麦克风。
处理数据:在结束采集之后可以对音频数据进行处理,比如语音识别,语音合成,语音压缩等.
注意:请确保在你的系统中已经安装好了麦克风驱动,并且在 Python 代码中有足够的权限访问麦克风。
#python中的pandas库主要有DataFrame和Series类(面向对象的的语言更愿意叫类) DataFrame也就是
#数据框(主要是借鉴R里面的data.frame),Series也就是序列 ,pandas底层是c写的 性能很棒,有大神
#做过测试 处理亿级别的数据没问题,起性能可以跟同等配置的sas媲美
#DataFrame索引 df.loc是标签选取操作,df.iloc是位置切片操作
print(df[['row_names','Rape']])
df['行标签']
df.loc[行标签,列标签]
print(df.loc[0:2,['Rape','Murder']])
df.iloc[行位置,列位置]
df.iloc[1,1]#选取第二行,第二列的值,返回的为单个值
df.iloc[0,2],:]#选取第一行及第三行的数据
df.iloc[0:2,:]#选取第一行到第三行(不包含)的数据
df.iloc[:,1]#选取所有记录的第一列的值,返回的为一个Series
df.iloc[1,:]#选取第一行数据,返回的为一个Series
print(df.ix[1,1]) # 更广义的切片方式是使用.ix,它自动根据你给到的索引类型判断是使用位置还是标签进行切片
print(df.ix[0:2])
#DataFrame根据条件选取子集 类似于sas里面if、where ,R里面的subset之类的函数
df[df.Murder13]
df[(df.Murder10)(df.Rape30)]
df[df.sex==u'男']
#重命名 相当于sas里面的rename R软件中reshape包的中的rename
df.rename(columns={'A':'A_rename'})
df.rename(index={1:'other'})
#删除列 相当于sas中的drop R软件中的test['col']-null
df.drop(['a','b'],axis=1) or del df[['a','b']]
#排序 相当于sas里面的sort R软件里面的df[order(x),]
df.sort(columns='C') #行排序 y轴上
df.sort(axis=1) #各个列之间位置排序 x轴上
#数据描述 相当于sas中proc menas R软件里面的summary
df.describe()
#生成新的一列 跟R里面有点类似
df['new_columns']=df['columns']
df.insert(1,'new_columns',df['B']) #效率最高
df.join(Series(df['columns'],name='new_columns'))
#列上面的追加 相当于sas中的append R里面cbind()
df.append(df1,ignore_index=True)
pd.concat([df,df1],ignore_index=True)
#最经典的join 跟sas和R里面的merge类似 跟sql里面的各种join对照
merge()
#删除重行 跟sas里面nodukey R里面的which(!duplicated(df[])类似
df.drop_duplicated()
#获取最大值 最小值的位置 有点类似矩阵里面的方法
df.idxmin(axis=0 ) df.idxmax(axis=1) 0和1有什么不同 自己摸索去
#读取外部数据跟sas的proc import R里面的read.csv等类似
read_excel() read_csv() read_hdf5() 等
与之相反的是df.to_excel() df.to_ecv()
#缺失值处理 个人觉得pandas中缺失值处理比sas和R方便多了
df.fillna(9999) #用9999填充
#链接数据库 不多说 pandas里面主要用 MySQLdb
import MySQLdb
conn=MySQLdb.connect(host="localhost",user="root",passwd="",db="mysql",use_unicode=True,charset="utf8")
read_sql() #很经典
#写数据进数据库
df.to_sql('hbase_visit',con, flavor="mysql", if_exists='replace', index=False)
#groupby 跟sas里面的中的by R软件中dplyr包中的group_by sql里面的group by功能是一样的 这里不多说
#求哑变量
dumiper=pd.get_dummies(df['key'])
df['key'].join(dumpier)
#透视表 和交叉表 跟sas里面的proc freq步类似 R里面的aggrate和cast函数类似
pd.pivot_table()
pd.crosstab()
#聚合函数经常跟group by一起组合用
df.groupby('sex').agg({'height':['mean','sum'],'weight':['count','min']})
#数据查询过滤
test.query("0.2
将STK_ID中的值过滤出来
stk_list = ['600809','600141','600329']中的全部记录过滤出来,命令是:rpt[rpt['STK_ID'].isin(stk_list)].
将dataframe中,某列进行清洗的命令
删除换行符:misc['product_desc'] = misc['product_desc'].str.replace('\n', '')
删除字符串前后空格:df["Make"] = df["Make"].map(str.strip)
如果用模糊匹配的话,命令是:
rpt[rpt['STK_ID'].str.contains(r'^600[0-9]{3}$')]
对dataframe中元素,进行类型转换
df['2nd'] = df['2nd'].str.replace(',','').astype(int) df['CTR'] = df['CTR'].str.replace('%','').astype(np.float64)
#时间变换 主要依赖于datemie 和time两个包
#其他的一些技巧
df2[df2['A'].map(lambda x:x.startswith('61'))] #筛选出以61开头的数据
df2["Author"].str.replace(".+", "").head() #replace(".+", "")表示将字符串中以””开头;以””结束的任意子串替换为空字符串
commits = df2["Name"].head(15)
print commits.unique(), len(commits.unique()) #获的NAME的不同个数,类似于sql里面count(distinct name)
#pandas中最核心 最经典的函数apply map applymap
这个里面他的话这个是可以进行进行采样的方法,然后再从他的点训练数据中转换乘1000点的话,它都是里面是转化的,数据比较多,所以所以的话工程量比较大。