大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
给出的x不是等间距的,用不了辛卜生公式,只能用梯形公式算数值积分。
成都创新互联公司专注于企业全网整合营销推广、网站重做改版、轵城网站定制设计、自适应品牌网站建设、H5页面制作、商城网站建设、集团公司官网建设、成都外贸网站制作、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为轵城等各大城市提供网站开发制作服务。
pre
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
def func(x):
return -(x-2)*(x-8)+40
x=np.linspace(0,10)
y=func(x)
fig,ax = plt.subplots()
plt.plot(x,y,'r',linewidth=2)
plt.ylim(ymin=20)
a=2
b=9
ax.set_xticks([a,b])
ax.set_xticklabels(['$a$','$b$'])
ax.set_yticks([])
plt.figtext(0.9,0.05,'$x$')
plt.figtext(0.1,0.9,'$y$')
ix=np.linspace(a,b)
iy=func(ix)
ixy=zip(ix,iy)
verts=[(a,0)]+list(ixy)+[(b,0)]
poly = Polygon(verts,facecolor='0.9',edgecolor='0.5')
ax.add_patch(poly)
x_math=(a+b)*0.5
y_math=35
plt.text(x_math,y_math,r"$\int_a^b(-(x-2)*(x-8)+40)dx$",horizontalalignment='center',size=12)
plt.show()
/pre
可以使用Python计算机图形学库matplotlib来绘制SSE值与K值的函数图像,具体步骤如下:
1. 导入必要的库,例如matplotlib,numpy,scipy等。
2. 使用numpy和scipy生成k值与SSE值之间的矩阵,并将其存储到列表中。
3. 使用matplotlib绘制输入矩阵中包含的散点图,即k值与SSE值的函数图像。
不写出y=f(x)这样的表达式,由隐函数的等式直接绘制图像,以x²+y²+xy=1的图像为例,使用sympy间接调用matplotlib工具的代码和该二次曲线图像如下(注意python里的乘幂符号是**而不是^,还有,python的sympy工具箱的等式不是a==b,而是a-b或者Eq(a,b),这几点和matlab的区别很大)
直接在命令提示行的里面运行代码的效果
from sympy import *;
x,y=symbols('x y');
plotting.plot_implicit(x**2+y**2+x*y-1);