大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
码字不易,如果此文对你有所帮助,请帮忙点赞,感谢!
创新互联制作网站网页找三站合一网站制作公司,专注于网页设计,网站设计制作、网站设计,网站设计,企业网站搭建,网站开发,建网站业务,680元做网站,已为上千余家服务,创新互联网站建设将一如既往的为我们的客户提供最优质的网站建设、网络营销推广服务!
一. 双线性插值法原理:
① 何为线性插值?
插值就是在两个数之间插入一个数,线性插值原理图如下:
② 各种插值法:
插值法的第一步都是相同的,计算目标图(dstImage)的坐标点对应原图(srcImage)中哪个坐标点来填充,计算公式为:
srcX = dstX * (srcWidth/dstWidth)
srcY = dstY * (srcHeight/dstHeight)
(dstX,dstY)表示目标图像的某个坐标点,(srcX,srcY)表示与之对应的原图像的坐标点。srcWidth/dstWidth 和 srcHeight/dstHeight 分别表示宽和高的放缩比。
那么问题来了,通过这个公式算出来的 srcX, scrY 有可能是小数,但是原图像坐标点是不存在小数的,都是整数,得想办法把它转换成整数才行。
不同插值法的区别就体现在 srcX, scrY 是小数时,怎么将其变成整数去取原图像中的像素值。
最近邻插值(Nearest-neighborInterpolation):看名字就很直白,四舍五入选取最接近的整数。这样的做法会导致像素变化不连续,在目标图像中产生锯齿边缘。
双线性插值(Bilinear Interpolation):双线性就是利用与坐标轴平行的两条直线去把小数坐标分解到相邻的四个整数坐标点。权重与距离成反比。
双三次插值(Bicubic Interpolation):与双线性插值类似,只不过用了相邻的16个点。但是需要注意的是,前面两种方法能保证两个方向的坐标权重和为1,但是双三次插值不能保证这点,所以可能出现像素值越界的情况,需要截断。
③ 双线性插值算法原理
假如我们想得到未知函数 f 在点 P = (x, y) 的值,假设我们已知函数 f 在 Q11 = (x1, y1)、Q12 = (x1, y2), Q21 = (x2, y1) 以及 Q22 = (x2, y2) 四个点的值。最常见的情况,f就是一个像素点的像素值。首先在 x 方向进行线性插值,然后再在 y 方向上进行线性插值,最终得到双线性插值的结果。
④ 举例说明
二. python实现灰度图像双线性插值算法:
灰度图像双线性插值放大缩小
import numpy as np
import math
import cv2
def double_linear(input_signal, zoom_multiples):
'''
双线性插值
:param input_signal: 输入图像
:param zoom_multiples: 放大倍数
:return: 双线性插值后的图像
'''
input_signal_cp = np.copy(input_signal) # 输入图像的副本
input_row, input_col = input_signal_cp.shape # 输入图像的尺寸(行、列)
# 输出图像的尺寸
output_row = int(input_row * zoom_multiples)
output_col = int(input_col * zoom_multiples)
output_signal = np.zeros((output_row, output_col)) # 输出图片
for i in range(output_row):
for j in range(output_col):
# 输出图片中坐标 (i,j)对应至输入图片中的最近的四个点点(x1,y1)(x2, y2),(x3, y3),(x4,y4)的均值
temp_x = i / output_row * input_row
temp_y = j / output_col * input_col
x1 = int(temp_x)
y1 = int(temp_y)
x2 = x1
y2 = y1 + 1
x3 = x1 + 1
y3 = y1
x4 = x1 + 1
y4 = y1 + 1
u = temp_x - x1
v = temp_y - y1
# 防止越界
if x4 = input_row:
x4 = input_row - 1
x2 = x4
x1 = x4 - 1
x3 = x4 - 1
if y4 = input_col:
y4 = input_col - 1
y3 = y4
y1 = y4 - 1
y2 = y4 - 1
# 插值
output_signal[i, j] = (1-u)*(1-v)*int(input_signal_cp[x1, y1]) + (1-u)*v*int(input_signal_cp[x2, y2]) + u*(1-v)*int(input_signal_cp[x3, y3]) + u*v*int(input_signal_cp[x4, y4])
return output_signal
# Read image
img = cv2.imread("../paojie_g.jpg",0).astype(np.float)
out = double_linear(img,2).astype(np.uint8)
# Save result
cv2.imshow("result", out)
cv2.imwrite("out.jpg", out)
cv2.waitKey(0)
cv2.destroyAllWindows()
三. 灰度图像双线性插值实验结果:
四. 彩色图像双线性插值python实现
def BiLinear_interpolation(img,dstH,dstW):
scrH,scrW,_=img.shape
img=np.pad(img,((0,1),(0,1),(0,0)),'constant')
retimg=np.zeros((dstH,dstW,3),dtype=np.uint8)
for i in range(dstH-1):
for j in range(dstW-1):
scrx=(i+1)*(scrH/dstH)
scry=(j+1)*(scrW/dstW)
x=math.floor(scrx)
y=math.floor(scry)
u=scrx-x
v=scry-y
retimg[i,j]=(1-u)*(1-v)*img[x,y]+u*(1-v)*img[x+1,y]+(1-u)*v*img[x,y+1]+u*v*img[x+1,y+1]
return retimg
im_path='../paojie.jpg'
image=np.array(Image.open(im_path))
image2=BiLinear_interpolation(image,image.shape[0]*2,image.shape[1]*2)
image2=Image.fromarray(image2.astype('uint8')).convert('RGB')
image2.save('3.png')
五. 彩色图像双线性插值实验结果:
六. 最近邻插值算法和双三次插值算法可参考:
① 最近邻插值算法:
② 双三次插值算法:
七. 参考内容:
params
就是(5, 5)
(5,) * 2 ,就是2个5的元组,乘号可以理解成相加。"*" * 30就是30个“*"的字符串
*params作为参数,前面的*号就是把params元组分解成元素的意思,这样就分开成为2个参数了。实际上传递给了x,y
于是就执行了power(5,5)
匿名函数:使用lambda创建的函数,所谓匿名,意即不再使用def语句这样标准的形式定义一个函数。
好处:
1、使用Python写一些执行脚本时,使用lambda可以省去定义函数的过程,让代码更加精简。
2、对于一些抽象的,不会别的地方再复用的函数,有时候给函数起个名字也是个难题,使用lambda不需要考虑命名的问题。
3、使用lambda在某些时候让代码更容易理解。了解更多python匿名函数相关知识,可以来老男孩教育。
应用场景:经常与一些内置函数相结合使用,比如说map()、filter()、sorted()、reduce()等。
表达式格式:lambda 参数列表:lambda体
__call__
在Python中,函数其实是一个对象:
f = abs
f.__name__
'abs'
f(-123)
由于 f 可以被调用,所以,f 被称为可调用对象。
所有的函数都是可调用对象。
一个类实例也可以变成一个可调用对象,只需要实现一个特殊方法__call__()。
我们把 Person 类变成一个可调用对象:
class Person(object):
def __init__(self, name, gender):
self.name = name
self.gender = gender
def __call__(self, friend):
print 'My name is %s...' % self.name
print 'My friend is %s...' % friend
现在可以对 Person 实例直接调用:
p = Person('Bob', 'male')
p('Tim')
My name is Bob...
My friend is Tim...
单看 p('Tim') 你无法确定 p 是一个函数还是一个类实例,所以,在Python中,函数也是对象,对象和函数的区别并不显著。
任务
改进一下前面定义的斐波那契数列:
class Fib(object):
???
请加一个__call__方法,让调用更简单:
f = Fib()
print f(10)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]