大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
loc中的数据是列名,是字符串,所以前后都要取;iloc中数据是int整型,所以是Python默认的前闭后开
创新互联建站是一家专注于做网站、成都做网站与策划设计,珙县网站建设哪家好?创新互联建站做网站,专注于网站建设十多年,网设计领域的专业建站公司;建站业务涵盖:珙县等地区。珙县做网站价格咨询:18982081108
构建数据集df
loc函数主要通过行标签索引行数据 ,划重点, 标签!标签!标签!
loc[1] 选择行标签是1的(从0、1、2、3这几个行标签中)
loc[0:1] 和 loc[0,1]的区别,其实最重要的是loc[0:1]和iloc[0:1]
索引某一列数据,loc[:,0:1],还是标签,注意,如果列标签是个字符,比如'a',loc['a']是不行的,必须为loc[:,'a']。
但如果行标签是'a',选取这一行,用loc['a']是可以的。
iloc 主要是通过行号获取行数据,划重点,序号!序号!序号!
iloc[0:1],由于Python默认是前闭后开,所以,这个选择的只有第一行!
如果想用标签索引,如iloc['a'],就会报错,它只支持int型。
ix——结合前两种的混合索引,即可以是行序号,也可以是行标签。
如选择prize10(prize为一个标签)的,即 df.loc[df.prize10]
还有并或等操作
python选取特定列——pandas的iloc和loc以及icol使用
pandas入门——loc与iloc函数
pandas中loc、iloc、ix的区别
pandas基础之按行取数(DataFrame)
Python批量处理excel数据(含完整代码)
pandas库可以有效的处理excel、csv和txt文件,并能多格式将数据重新保存为excel、csv和txt文件。
1
1
一、导入数据
利用pandas库中的read函数可以将excel文件读入,转化为 DataFrame格式
import pandas as pd
path = "D:\text.xlsx" ##文件路径
data = pd.read_excel(path,sheet_name = 0) ##若包含多个子表,可以用sheet_name参参数进行选择
若excel表中不包含列名信息可以在读入时,利用names参数进行指定
data = pd.read_excel(path,names=["id","name","date"])
对于csv文件可以使用pd.read_csv函数进行数据导入
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
二、空表创建
当输出表格和输入表格的格式不一致时,我们可以通过创建空表来解决问题,新的DataFrame表格的数据可以为空,但是必须设置列名,也就是表头
##利用list创建表头
header = ["name","date","a","b"]
##创建空表
outData = pd.DataFrame(columns=header)
1
2
3
4
5
6
7
1
2
3
4
5
6
7
三、数据增删查改
1.数据查改
利用loc和iloc函数可以对DataFrame 数据表中的数据进行查改,loc使用行名和列名进行调用,iloc使用行列索引进行调用
propoLoc = data.loc["index", "proportion"]
propoIloc = data.loc[0, 0]
data.iloc[:, 5:] = data.iloc[:, 5:].astype(int) ##利用索引可以对数据进行批量处理,此句指令用于将表格第五列至最后一列的格式转化为整型int
2.数据增删
利用drop函数可以删除指定行列,利用loc或insert函数可以增加列,loc用来增加行
data.drop(index=[0], inplace=True) ##删除行名为0的行
data.drop(columns=[0], inplace=True,axis=1) ##删除列名为0的列
data.loc[str(csvName)] = rowData ##增加行名为csvName的行,注意rowData要保证和data的列数一致
data.loc[:,str(csvName)] = 0 ##增加列名为csvName的列,用0填充该列
data.insert(data.shape[1], 'd', 0) ##在data.shape[1]处增加列,并用0填充
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
四、批量处理
首先利用os库对文件夹进行遍历,获得所有的excel文件
import os
excelNames = os.listdir(rootPath) ##获得所有的文件名
for excelName in excelNames:
##对每个文件进行处理
1
2
3
4
5
6
7
1
2
3
4
5
6
7
五、常用的数据处理方法
1.字符串分割 str.split(",") 用逗号进行分割,并创建一个list进行存储
2.str.endswith("hello") 判断字符串的后缀
1
2
1
2
六、表格存储
1.单表存储:将一个sheet放入到一个excel中
saveFile = rootPath+"test.xlsx" ##指定保存文件,注意反复保存时,excel不要打开,否则无法写入
rootData.to_excel(saveFile,index=False) ##保存指定,并不保存行名
2.多表存储:将多个sheet放入到一个excel中
with pd.ExcelWriter('./dataOut.xlsx') as writer:
DFa.to_excel(writer, sheet_name="表1")
DFb.to_excel(writer, sheet_name="表2")
DFc.to_excel(writer, sheet_name="表3")
writer.save()
writer.close()
批量表格处理完整代码:将多张表的信息进行汇总
import os
import pandas as pd
rootPath = "C:\test\"
def createOutCsv(path):
data = pd.read_excel(path, names=["column1", "column2", "column3"])
data.drop(index=[0], inplace=True)
header = ["name"] ###创建表头
for index in data.index: ##利用data中的所有column1创建表头
column = data.loc[index,"name"].split(".")[-1]
header.append(column
你这个iloc是pandas中的函数。
这个语句返回的是dataFrame从索引0到倒数第二行,步长为1的内容。
PYTHON的切片结束位置不包含偏移数本身,所以:-1切片到的最后内容是倒数第二位置的元素。