大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
基本含义NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。NoSQLNoSQL数据库的四大分类键值(Key-Value)存储数据库这一类数据库主要会使用到一个哈希表,这个表中有一个特定的键和一个指针指向特定的数据。Key/value模型对于IT系统来说的优势在于简单、易部署。但是如果DBA只对部分值进行查询或更新的时候,Key/value就显得效率低下了。[3] 举例如:Tokyo Cabinet/Tyrant, Redis, Voldemort, Oracle BDB.列存储数据库。这部分数据库通常是用来应对分布式存储的海量数据。键仍然存在,但是它们的特点是指向了多个列。这些列是由列家族来安排的。如:Cassandra, HBase, Riak.文档型数据库文档型数据库的灵感是来自于Lotus Notes办公软件的,而且它同第一种键值存储相类似。该类型的数据模型是版本化的文档,半结构化的文档以特定的格式存储,比如JSON。文档型数据库可 以看作是键值数据库的升级版,允许之间嵌套键值。而且文档型数据库比键值数据库的查询效率更高。如:CouchDB, MongoDb. 国内也有文档型数据库SequoiaDB,已经开源。图形(Graph)数据库图形结构的数据库同其他行列以及刚性结构的SQL数据库不同,它是使用灵活的图形模型,并且能够扩展到多个服务器上。NoSQL数据库没有标准的查询语言(SQL),因此进行数据库查询需要制定数据模型。许多NoSQL数据库都有REST式的数据接口或者查询API。[2] 如:Neo4J, InfoGrid, Infinite Graph.因此,我们总结NoSQL数据库在以下的这几种情况下比较适用:1、数据模型比较简单;2、需要灵活性更强的IT系统;3、对数据库性能要求较高;4、不需要高度的数据一致性;5、对于给定key,比较容易映射复杂值的环境。
创新互联专注于宣城企业网站建设,响应式网站,成都做商城网站。宣城网站建设公司,为宣城等地区提供建站服务。全流程按需定制,专业设计,全程项目跟踪,创新互联专业和态度为您提供的服务
nosql是not only sql的意思。是近今年新发展起来的存储系统。当前使用最多的是key-value模型,用于处理超大规模的数据。
以下是摘自百度百科中的一部分
NoSQL 是非关系型数据存储的广义定义。它打破了长久以来关系型数据库与ACID理论大一统的局面。NoSQL 数据存储不需要固定的表结构,通常也不存在连接操作。在大数据存取上具备关系型数据库无法比拟的性能优势。该术语在 2009 年初得到了广泛认同。
当今的应用体系结构需要数据存储在横向伸缩性上能够满足需求。而 NoSQL 存储就是为了实现这个需求。Google 的BigTable与Amazon的Dynamo是非常成功的商业 NoSQL 实现。一些开源的 NoSQL 体系,如Facebook 的Cassandra, Apache 的HBase,也得到了广泛认同。从这些NoSQL项目的名字上看不出什么相同之处:Hadoop、Voldemort、Dynomite,还有其它很多。
NoSQL与关系型数据库设计理念比较
关系型数据库中的表都是存储一些格式化的数据结构,每个元组字段的组成都一样,即使不是每个元组都需要所有的字段,但数据库会为每个元组分配所有的字段,这样的结构可以便于表与表之间进行连接等操作,但从另一个角度来说它也是关系型数据库性能瓶颈的一个因素。而非关系型数据库以键值对存储,它的结构不固定,每一个元组可以有不一样的字段,每个元组可以根据需要增加一些自己的键值对,这样就不会局限于固定的结构,可以减少一些时间和空间的开销。
No SQL DB是一种和关系型数据库相对应的对象数据库。按照数据模型保存性质将当前NoSQL分为四种:
1.Key-value stores键值存储, 保存keys+BLOBs
2.Table-oriented 面向表, 主要有Google的BigTable和Cassandra.
3.Document-oriented面向文本, 文本是一种类似XML文档,MongoDB 和 CouchDB
4.Graph-oriented 面向图论. 如Neo4J.
关系型数据库的弊端:
关系型数据库的历史已经有30余年了,因此,在某些情况下,关系型数据库的弱点就会暴露出来:
1. “对象-关系 阻抗不匹配”。关系模型和面向对象模型在概念上存在天然的不匹配的地方,比如对象模型当中特有的“继承”,“组合”,“聚合”,“依赖”的概念在关系模型当中是不存在的。
2. “模式演进”。即随着时间的推移,需要对数据库模式进行调整以便适应新的需求,然而,对数据库模式的调整是的成本很高的动作,因此很多设计师在系统设计之初会设计一个兼容性很强的数据库模式,以应对将来可能出现的需求,然而在现在的web系统开发过程中,系统的变更更加频繁,几乎无法预先设计出一种“万能”的数据库模式以满足所有的需求,因此 模式演进的弊端就愈发凸显。
3. 关系型数据库处理 稀疏表时的性能非常差。
4. networkoriented data 很适合处理 人工智能、社交网络中的一些需求。
所以,各种各样的No SQL DB 出现了,这里只简单介绍下Neo4J 的基本知识。
Neo 数据模型
Neo4J 是一个基于图实现的No SQL DB, 其基本的数据类型有如下几种:
Node, Relationship, Property.
Node 对应于图中的 节点,Relationship 对应图中的边,Node 和 Relationship 都可以拥有Property,
Property 的数据结构为。
数据遍历
1. 键值数据库
相关产品:Redis、Riak、SimpleDB、Chordless、Scalaris、Memcached
应用:内容缓存
优点:扩展性好、灵活性好、大量写操作时性能高
缺点:无法存储结构化信息、条件查询效率较低
使用者:百度云(Redis)、GitHub(Riak)、BestBuy(Riak)、Twitter(Ridis和Memcached)
2. 列族数据库
相关产品:BigTable、HBase、Cassandra、HadoopDB、GreenPlum、PNUTS
应用:分布式数据存储与管理
优点:查找速度快、可扩展性强、容易进行分布式扩展、复杂性低
使用者:Ebay(Cassandra)、Instagram(Cassandra)、NASA(Cassandra)、Facebook(HBase)
3. 文档数据库
相关产品:MongoDB、CouchDB、ThruDB、CloudKit、Perservere、Jackrabbit
应用:存储、索引并管理面向文档的数据或者类似的半结构化数据
优点:性能好、灵活性高、复杂性低、数据结构灵活
缺点:缺乏统一的查询语言
使用者:百度云数据库(MongoDB)、SAP(MongoDB)
4. 图形数据库
图形数据库-使用图作为数据模型来存储数据。
相关产品:Neo4J、OrientDB、InfoGrid、GraphDB
应用:大量复杂、互连接、低结构化的图结构场合,如社交网络、推荐系统等
优点:灵活性高、支持复杂的图形算法、可用于构建复杂的关系图谱
缺点:复杂性高、只能支持一定的数据规模
使用者:Adobe(Neo4J)、Cisco(Neo4J)、T-Mobile(Neo4J)
答案:A
1.文档型数据库
作为最受欢迎的NoSQL产品,文档型数据库MongoDB当仁不让地占据了第一的位置,同时它也是所有NoSQL数据库中排名最靠前的产品(总排行榜第七名)。Apache基金会的CouchDB排在第二,基于.Net的数据库RavenDB排在第三,Couchbase排在第四。
2.键值(Key-value)数据库
键值(Key-value)数据库是NoSQL领域中应用范围最广的,也是涉及产品最多的一种模型。从最简单的BerkeleyDB到功能丰富的分布式数据库Riak再到Amazon托管的DynamoDB不一而足。
在键值数据库流行度排行中,Redis不出意外地排名第一,它是一款由Vmware支持的内存数据库,总体排名第十一。排在第二位的是Memcached,它在缓存系统中应用十分广泛。排在之后的是Riak、BerkeleyDB、SimpleDB、DynamoDB以及甲骨文的Oracle NoSQL数据库。值得注意的是,Oracle NoSQL数据库上榜不久,得分已经翻番,上升势头非常迅猛。
3. 列式存储
列式存储被视为NoSQL数据库中非常重要的一种模式,其中Cassandra流行度最高,它已经由Facebook转交给到Apache进行管理,同时Cassandra在全体数据库排名中排在第十位,紧随MongoDB成为第二受欢迎的NoSQL数据库。基于Hadoop的Hbase排在第二位,Hypertable排在第三。而Google的BigTable并未列入排名,原因是它并未正式公开。
文档数据库
源起:受Lotus Notes启发。
数据模型:包含了key-value的文档集合
例子:CouchDB, MongoDB
优点:数据模型自然,编程友好,快速开发,web友好,CRUD。
图数据库
源起: 欧拉和图理论。
数据模型:节点和关系,也可处理键值对。
例子:AllegroGraph, InfoGrid, Neo4j
优点:解决复杂的图问题。
关系数据库
源起: E. F. Codd 在A Relational Model of Data for Large Shared Data Banks提出的
数据模型:各种关系
例子:VoltDB, Clustrix, MySQL
优点:高性能、可扩展的OLTP,支持SQL,物化视图,支持事务,编程友好。
对象数据库
源起:图数据库研究
数据模型:对象
例子:Objectivity, Gemstone
优点:复杂对象模型,快速键值访问,键功能访问,以及图数据库的优点。
Key-Value数据库
源起:Amazon的论文 Dynamo 和 Distributed HashTables。
数据模型:键值对
例子:Membase, Riak
优点:处理大量数据,快速处理大量读写请求。编程友好。
BigTable类型数据库
源起:Google的论文 BigTable。
数据模型:列簇,每一行在理论上都是不同的
例子:HBase, Hypertable, Cassandra
优点:处理大量数据,应对极高写负载,高可用,支持跨数据中心, MapReduce。
数据结构服务
源起: ?
数据模型:字典操作,lists, sets和字符串值
例子:Redis
优点:不同于以前的任何数据库
网格数据库
源起:数据网格和元组空间研究。
数据模型:基于空间的架构
例子:GigaSpaces, Coherence
优点:适于事务处理的高性能和高扩展性