大橙子网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

Python数据处理之Sympy如何实现解方程-创新互联

小编给大家分享一下Python数据处理之Sympy如何实现解方程,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

创新互联专注于眉山网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供眉山营销型网站建设,眉山网站制作、眉山网页设计、眉山网站官网定制、小程序定制开发服务,打造眉山网络公司原创品牌,更为您提供眉山网站排名全网营销落地服务。

官方教程

https://docs.sympy.org/latest/tutorial/solvers.html

(一)求解多元一次方程-solve()

1.说明:

解多元一次方程可以使用solve(),在sympy里,等式是用Eq()来表示,

例如:2x=42x=4 表示为:Eq(x*2, 4)

2.源代码:

"""
 解下列二元一次方程
 2x-y=3
 3x+y=7
"""
# 导入模块
from sympy import *
# 将变量符号化
x = Symbol('x')
y = Symbol('y')
z = Symbol('z')
# 解一元一次方程
expr1 = x*2-4
r1 = solve(expr1, x)
r1_eq = solve(Eq(x*2, 4), x)
print("r1:", r1)
print("r1_eq:", r1_eq)
# 解二元一次方程
expr2 = [2*x-y-3, 3*x+y-7]
r2 = solve(expr2, [x, y])
print("r1:", r2)
# 解三元一次方程
f1 = x+y+z-2
f2 = 2*x-y+z+1
f3 = x+2*y+2*z-3
r3 = solve([f1, f2, f3], [x, y, z])
print("r3:", r3)

3.输出:

Python数据处理之Sympy如何实现解方程

(二)解线性方程组-linsolve()

1.说明:

在sympy中,解线性方程组有三种形式:

默认等式为0的形式:linsolve(eq, [x, y, z])

矩阵形式:linsolve(eq, [x, y, z])

增广矩阵形式:linsolve(A,b, x, y, z)

2.源代码:

"""
  x+y+z-2=0
  2x-y+z+1=0
  x+2y+2z-3=0
"""
from sympy import *
x, y, z = symbols("x y z")
# 默认等式为0的形式
print("======默认等式为0的形式 =======")
eq = [x+y+z-2, 2*x-y+z+1, x+2*y+2*z-3]
result = linsolve(eq, [x, y, z])
print(result)
print(latex(result))
# 矩阵形式
print("======矩阵形式 =======")
eq = Matrix(([1, 1, 1, 2], [2, -1, 1, -1], [1, 2, 2, 3]))
result = linsolve(eq, [x, y, z])
print(result)
print(latex(result))
# 增广矩阵形式
print("======增广矩阵形式 =======")
A = Matrix([[1, 1, 1], [2, -1, 1], [1, 2, 2]])
b = Matrix([[2], [-1], [3]])
system = A, b
result = linsolve(system, x, y, z)
print(result)
print(latex(result))

3.输出:

Python数据处理之Sympy如何实现解方程

(三)解非线性方程组-nonlinsolve()

1.说明:

nonlinsolve()用于求解非线性方程组,例如二次方,三角函数,,,等方程

2.源代码:

"""
  x**2+y**2-2=0
  x**3+y**3=0
"""
import sympy as sy
x, y = sy.symbols("x y")
eq = [x**2+y**3-2, x**3+y**3]
result = sy.nonlinsolve(eq, [x, y])
print(result)
print(sy.latex(result))

3.输出:

Python数据处理之Sympy如何实现解方程

Python数据处理之Sympy如何实现解方程

(四)求解微分方程-dsolve()

1.说明:

求解微分方程使用dsolve(),注意:

f = symbols('f', cls=Function)的作用是声明f()是一个函数。

2.源代码:

from sympy import *
# 初始化
x = symbols('x')
f = symbols('f', cls=Function)
# 表达式
expr1 = Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x))
# 求解微分方程
r1 = dsolve(expr1, f(x))
print(r1)
print("原式:", latex(expr1))
print("求解后:", latex(r1))

3.输出:

原式:

f(x)−2ddxf(x)+d2dx2f(x)=sin(x)
f(x)−2ddxf(x)+d2dx2f(x)=sin⁡(x)

解微分后:

f(x)=(C1+C2x)ex+cos(x)2
f(x)=(C1+C2x)ex+cos⁡(x)2

Python数据处理之Sympy如何实现解方程

以上是“Python数据处理之Sympy如何实现解方程”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!


当前题目:Python数据处理之Sympy如何实现解方程-创新互联
链接地址:http://dzwzjz.com/article/dscdoh.html
在线咨询
服务热线
服务热线:028-86922220
TOP