大橙子网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

nosqlcap定理,nosql cap理论

如何“打败”CAP定理

CAP 定理是数据系统设计的基本理论,目前几乎所有的数据系统的设计都遵循了这个定理。但 CAP 定理给目前的数据系统带来了许多复杂的、不可控的问题,使得数据系统的设计越来越复杂。Twitter 首席工程师、Storm 的作者 Nathan Marz 在本文中通过避开 CAP 定理带来的诸多复杂问题,展示了一个不同于以往的数据系统设计方案,给我们的数据系统设计带来了全新的思路。

创新互联建站是一家专注于成都网站设计、成都网站建设、外贸网站建设与策划设计,博山网站建设哪家好?创新互联建站做网站,专注于网站建设十年,网设计领域的专业建站公司;建站业务涵盖:博山等地区。博山做网站价格咨询:18980820575

CAP 定理指出,一个数据库不可能同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition-Tolerance)。

一致性(Consistency)是指执行了一次成功的写操作之后,未来的读操作一定可以读到这个写入的值。可用性(Availability)是指系统总是可读可写的。Yammer 的 Coda Hale 和 Cloudera 的 Henry Robinson 都阐述过,分区容错性是不能牺牲的,因此只能在一致性和可用性上做取舍,如何处理这种取舍正是目前 NoSQL 数据库的核心焦点。

选择一致性而不是可用性的系统将面临一些尴尬的问题,当系统不可用时怎么办?你可以对写操作进行缓冲处理,但如果存储缓冲数据的机器出现故障,客户端将丢失写入的值。同样地,缓冲写也可以被认为是一种非一致性的操作,因为客户端认为成功的写入实际上并没有写入到实际的数据库中。当然,系统可以在机器不可用时向客户端返回错误,但可以想象,一个经常告诉客户端“请重试”的产品是多么令人讨厌。

什么是CAP原理

分布式领域CAP理论,

Consistency(一致性), 数据一致更新,所有数据变动都是同步的

Availability(可用性), 好的响应性能

Partition tolerance(分区容错性) 可靠性

定理:任何分布式系统只可同时满足二点,没法三者兼顾。

忠告:架构师不要将精力浪费在如何设计能满足三者的完美分布式系统,而是应该进行取舍。

关系数据库的ACID模型拥有 高一致性 + 可用性 很难进行分区:

Atomicity原子性:一个事务中所有操作都必须全部完成,要么全部不完成。

Consistency一致性. 在事务开始或结束时,数据库应该在一致状态。

Isolation隔离层. 事务将假定只有它自己在操作数据库,彼此不知晓。

Durability. 一旦事务完成,就不能返回。

跨数据库事务:2PC (two-phase commit), 2PC is the anti-scalability pattern (Pat Helland) 是反可伸缩模式的,JavaEE中的JTA事务可以支持2PC。因为2PC是反模式,尽量不要使用2PC,使用BASE来回避。

BASE模型反ACID模型,完全不同ACID模型,牺牲高一致性,获得可用性或可靠性:

Basically Available基本可用。支持分区失败(e.g. sharding碎片划分数据库)

Soft state软状态 状态可以有一段时间不同步,异步。

Eventually consistent最终一致,最终数据是一致的就可以了,而不是时时高一致。

BASE思想的主要实现有

1.按功能划分数据库

2.sharding碎片

BASE思想主要强调基本的可用性,如果你需要High 可用性,也就是纯粹的高性能,那么就要以一致性或容错性为牺牲,BASE思想的方案在性能上还是有潜力可挖的。

现在NoSQL运动丰富了拓展了BASE思想,可按照具体情况定制特别方案,比如忽视一致性,获得高可用性等等,NOSQL应该有下面两个流派:

1. Key-Value存储,如Amaze Dynamo等,可根据CAP三原则灵活选择不同倾向的数据库产品。

2. 领域模型 + 分布式缓存 + 存储 (Qi4j和NoSQL运动),可根据CAP三原则结合自己项目定制灵活的分布式方案,难度高。

这两者共同点:都是关系数据库SQL以外的可选方案,逻辑随着数据分布,任何模型都可以自己持久化,将数据处理和数据存储分离,将读和写分离,存储可以是异步或同步,取决于对一致性的要求程度。

不同点:NOSQL之类的Key-Value存储产品是和关系数据库头碰头的产品BOX,可以适合非Java如PHP RUBY等领域,是一种可以拿来就用的产品,而领域模型 + 分布式缓存 + 存储是一种复杂的架构解决方案,不是产品,但这种方式更灵活,更应该是架构师必须掌握的。

什么是NoSQL数据库?

2. 什么是NoSQL?

2.1 NoSQL 概述

NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,

泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题,包括超大规模数据的存储。

(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据)。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。

2.2 NoSQL代表

MongDB、 Redis、Memcache

3. 关系型数据库与NoSQL的区别?

3.1 RDBMS

高度组织化结构化数据

结构化查询语言(SQL)

数据和关系都存储在单独的表中。

数据操纵语言,数据定义语言

严格的一致性

基础事务

ACID

关系型数据库遵循ACID规则

事务在英文中是transaction,和现实世界中的交易很类似,它有如下四个特性:

A (Atomicity) 原子性

原子性很容易理解,也就是说事务里的所有操作要么全部做完,要么都不做,事务成功的条件是事务里的所有操作都成功,只要有一个操作失败,整个事务就失败,需要回滚。比如银行转账,从A账户转100元至B账户,分为两个步骤:1)从A账户取100元;2)存入100元至B账户。这两步要么一起完成,要么一起不完成,如果只完成第一步,第二步失败,钱会莫名其妙少了100元。

C (Consistency) 一致性

一致性也比较容易理解,也就是说数据库要一直处于一致的状态,事务的运行不会改变数据库原本的一致性约束。

I (Isolation) 独立性

所谓的独立性是指并发的事务之间不会互相影响,如果一个事务要访问的数据正在被另外一个事务修改,只要另外一个事务未提交,它所访问的数据就不受未提交事务的影响。比如现有有个交易是从A账户转100元至B账户,在这个交易还未完成的情况下,如果此时B查询自己的账户,是看不到新增加的100元的

D (Durability) 持久性

持久性是指一旦事务提交后,它所做的修改将会永久的保存在数据库上,即使出现宕机也不会丢失。

3.2 NoSQL

代表着不仅仅是SQL

没有声明性查询语言

没有预定义的模式

键 - 值对存储,列存储,文档存储,图形数据库

最终一致性,而非ACID属性

非结构化和不可预知的数据

CAP定理

高性能,高可用性和可伸缩性

分布式数据库中的CAP原理(了解)

CAP定理:

Consistency(一致性), 数据一致更新,所有数据变动都是同步的

Availability(可用性), 好的响应性能

Partition tolerance(分区容错性) 可靠性

P: 系统中任意信息的丢失或失败不会影响系统的继续运作。

定理:任何分布式系统只可同时满足二点,没法三者兼顾。

CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求,

因此,根据 CAP 原理将 NoSQL 数据库分成了满足 CA 原则、满足 CP 原则和满足 AP 原则三 大类:

CA - 单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强大。

CP - 满足一致性,分区容忍性的系统,通常性能不是特别高。

AP - 满足可用性,分区容忍性的系统,通常可能对一致性要求低一些。

CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。

而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。

所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。

说明:C:强一致性 A:高可用性 P:分布式容忍性

举例:

CA:传统Oracle数据库

AP:大多数网站架构的选择

CP:Redis、Mongodb

注意:分布式架构的时候必须做出取舍。

一致性和可用性之间取一个平衡。多余大多数web应用,其实并不需要强一致性。

因此牺牲C换取P,这是目前分布式数据库产品的方向。

4. 当下NoSQL的经典应用

当下的应用是 SQL 与 NoSQL 一起使用的。

代表项目:阿里巴巴商品信息的存放。

去 IOE 化。

ps:I 是指 IBM 的小型机,很贵的,好像好几万一台;O 是指 Oracle 数据库,也很贵的,好几万呢;M 是指 EMC 的存储设备,也很贵的。

难点:

数据类型多样性。

数据源多样性和变化重构。

数据源改造而服务平台不需要大面积重构。

为什么大部分NoSQL不提供分布式事务

像MongoDB, Cassandra, HBase, DynamoDB, 和

Riak这些NoSQL缺乏传统的原子事务机制,所谓原子事务机制是可以保证一系列写操作要么全部完成,要么全部不会完成,不会发生只完成一系列中一两个

写操作;因为数据库不提供这种事务机制支持,开发者需要自己编写代码来确保一系列写操作的事务机制,比较复杂和测试。

这些NoSQL数据库不提供事务机制原因在于其分布式特点,一系列写操作中访问的数据可能位于不同的分区服务器,这样的事务就变成分布式事务,在分

布式事务中实现原子性需要彼此协调,而协调是耗费时间的,每台机器在一个大事务过程中必须依次确认,这就需要一种协议确保一个事务中没有任何一台机器写操

作失败。

这种协调是昂贵的,会增加延迟时间,关键问题是,当协调没有完成时,其他操作是不能读取事务中写操作结果的,这是因为事务的all-or-

nothing原理导致,万一协调过程发现某个写操作不能完成,那么需要将其他写操作成功的进行回滚。针对分布式事务的分布式协调对整体数据库性能有严重

影响,不只是吞吐量还包括延迟时间,这样大部分NoSQL数据库因为性能问题就选择不提供分布式事务。

MongoDB, Riak, HBase, 和 Cassandra提供基于单一键的事务,这是因为所有信息都和一个键key有关,这个键是存储在单个服务器上,这样基于单键的事务不会带来复杂的分布式协调。

那么看来扩展性性能和分布式事务是一对矛盾,总要有取舍?实际上是不完全是,现在完全有可能提供高扩展的性能同时提供分布式原子事务。

FIT是这样一个在分布式系统提供原子事务的策略,在fairness公平性, isolation隔离性, 和throughput吞吐量(简称FIT)可以权衡。

一个支持分布式事务的可伸缩分布式系统能够完成这三个属性中两个,公平是事务之间不会相互影响造成延迟;隔离性提供一种幻觉好像整个数据库只有它自

己一个事务,隔离性保证当任何同时发生的事务发生冲突时,能够保证彼此能看到彼此的写操作结果,因此减轻了程序员为避免事务读写冲突的强逻辑推理要求;吞

吐量是指每单元时间数据库能够并发处理多少事务。

FIT是如下进行权衡:

保证公平性fairness 和隔离性isolation, 但是牺牲吞吐量

保证公平性fairness和吞吐量, 牺牲隔离性isolation

保证隔离性isolation和吞吐量throughput, 但是牺牲公平性fairness.

牺牲公平性:放弃公平性,数据库能有更多机会降低分布式事务的成本,主要成本是分布式协调带来的,也就是说,不需要在每个事务过程内对每个机器都依

次确认事务完成,这样排队式的确认commit事务是很浪费时间的,放弃公平性,意味着可以在事务外面进行协调,这样就只是增加了协调时间,不会增加互相

冲突事务因为彼此冲突而不能运行所耽搁的时间,当系统不需要公平性时,需要根据事务的优先级或延迟等标准进行指定先后执行顺序,这样就能够获得很好的吞吐

量。

G-Store是一种放弃公平性的 Isolation-Throughput

的分布式key-value存储,支持多键事务(multi-key transactions),MongoDB 和

HBase在键key在同样分区上也支持多键事务,但是不支持跨分区的事务。

总之:传统分布式事务性能不佳的原因是确保原子性(分布式协调)和隔离性同时重叠,创建一个高吞吐量分布式事务的关键是分离这两种关注,这种分离原

子性和隔离性的视角将导致两种类型的系统,第一种选择是弱隔离性能让冲突事务并行执行和确认提交;第二个选择重新排序原子性和隔离性机制保证它们不会某个

时间重叠,这是一种放弃公平的事务执行,所谓放弃公平就是不再同时照顾原子性和隔离性了,有所倾斜,放弃高标准道德要求就会带来高自由高效率。

如何正确理解CAP理论

常见的理解及分析

目前流行的、对CAP理论解释的情形是从同一数据在网络环境中的多个副本出发的。为了保证数据不会丢失,在企业级的数据管理方案中,一般必须考虑数据的冗余存储问题,而这应该是通过在网络上的其他独立物理存储节点上保留另一份、或多份数据副本来实现的(如附图所示)。因为在同一个存储节点上的数据冗余明显不能解决单点故障问题,这与通过多节点集群来提供更好的计算可用性的道理是相同的。

附图 CAP理论示意图

其实,不用做严格的证明也可以想见,如附图的情况,数据在节点A、B、C上保留了三份,如果对节点A上的数据进行了修改,然后再让客户端通过网络对该数据进行读取。那么,客户端的读取操作什么时候返回呢?

有这样两种情况:一种情况是要求节点A、B、C的三份数据完全一致后返回。也就是说,这时从任何一个网络节点读取的数据都是一样的,这就是所谓的强一致性读。很明显,这时数据读取的Latency要高一些(因为要等数据在网络中的复制),同时A、B、C三个节点中任何一个宕机,都会导致数据不可用。也就是说,要保证强一致性,网络中的副本越多,数据的可用性就越差;

另一种情况是,允许读操作立即返回,容忍B节点的读取与A节点的读取不一致的情况发生。这样一来,可用性显然得到了提高,网络中的副本也可以多一些,唯一得不到保证的是数据一致性。当然,对写操作同样也有多个节点一致性的情况,在此不再赘述。

可以看出,上述对CAP理论的解释主要是从网络上多个节点之间的读写一致性出发考虑问题的。而这一点,对于关系型数据库意味着什么呢?当然主要是指通常所说的Standby(关于分布式事务,涉及到更多考虑,随后讨论)情况。对此,在实践中我们大多已经采取了弱一致性的异步延时同步方案,以提高可用性。这种情况并不存在关系型数据库为保证C、A而放弃P的情况;而对海量数据管理的需求,关系型数据库扩展过程中所遇到的性能瓶颈,似乎也并不是CAP理论中所描述的那种原因造成的。那么,上述流行的说法中所描述的关系型数据库为保证C、A而牺牲P到底是在指什么呢?

因此,如果根据现有的大多数资料对CAP理论的如上解释,即只将其当作分布式系统中多个数据副本之间的读写一致性问题的通用理论对待,那么就可以得出结论:CAP既适用于NoSQL数据库,也适用于关系型数据库。它是NoSQL数据库、关系型数据库,乃至一切分布式系统在设计数据多个副本之间读写一致性问题时需要遵循的共同原则。

更深入的探究:两种重要的分布式场景

在本文中我们要说的重点与核心是:关于对CAP理论中一致性C的理解,除了上述数据副本之间的读写一致性以外,分布式环境中还有两种非常重要的场景,如果不对它们进行认识与讨论,就永远无法全面地理解CAP,当然也就无法根据CAP做出正确的解释。但可惜的是,目前为止却很少有人提及这两种场景:那就是事务与关联。

先来看看分布式环境中的事务场景。我们知道,在关系型数据库的事务操作遵循ACID原则,其中的一致性C,主要是指一个事务中相关联的数据在事务操作结束后是一致的。所谓ACID原则,是指在写入/异动资料的过程中,为保证交易正确可靠所必须具备的四个特性:即原子性(Atomicity,或称不可分割性)、一致性(Consistency)、隔离性(Isolation,又称独立性)和持久性(Durability)。

例如银行的一个存款交易事务,将导致交易流水表增加一条记录。同时,必须导致账户表余额发生变化,这两个操作必须是一个事务中全部完成,保证相关数据的一致性。而前文解释的CAP理论中的C是指对一个数据多个备份的读写一致性。表面上看,这两者不是一回事,但实际上,却是本质基本相同的事物:数据请求会等待多个相关数据操作全部完成才返回。对分布式系统来讲,这就是我们通常所说的分布式事务问题。

众所周知,分布式事务一般采用两阶段提交策略来实现,这是一个非常耗时的复杂过程,会严重影响系统效率,在实践中我们尽量避免使用它。在实践过程中,如果我们为了扩展数据容量将数据分布式存储,而事务的要求又完全不能降低。那么,系统的可用性一定会大大降低,在现实中我们一般都采用对这些数据不分散存储的策略。

当然,我们也可以说,最常使用的关系型数据库,因为这个原因,扩展性(分区可容忍性P)受到了限制,这是完全符合CAP理论的。但同时我们应该意识到,这对NoSQL数据库也是一样的。如果NoSQL数据库也要求严格的分布式事务功能,情况并不会比关系型数据库好多少。只是在NoSQL的设计中,我们往往会弱化甚至去除事务的功能,该问题才表现得不那么明显而已。

因此,在扩展性问题上,如果要说关系型数据库是为了保证C、A而牺牲P,在尽量避免分布式事务这一点上来看,应该是正确的。也就是说:关系型数据库应该具有强大的事务功能,如果分区扩展,可用性就会降低;而NoSQL数据库干脆弱化甚至去除了事务功能,因此,分区的可扩展性就大大增加了。

再来看看分布式环境中的关联场景。初看起来,关系型数据库中常用的多表关联操作与CAP理论就更加不沾边了。但仔细考虑,也可以用它来解释数据库分区扩展对关联所带来的影响。对一个数据库来讲,采用了分区扩展策略来扩充容量,数据分散存储了,很显然多表关联的性能就会下降,因为我们必须在网络上进行大量的数据迁移操作,这与CAP理论中数据副本之间的同步操作本质上也是相同的。

因此,如果要保证系统的高可用性,需要同时实现强大的多表关系操作的关系型数据库在分区可扩展性上就遇到了极大的限制(即使是那些采用了各种优秀解决方案的MPP架构的关系型数据库,如TeraData,Netezza等,其水平可扩展性也是远远不如NoSQL数据库的),而NoSQL数据库则干脆在设计上弱化甚至去除了多表关联操作。那么,从这一点上来理解“NoSQL数据库是为了保证A与P,而牺牲C”的说法,也是可以讲得通的。当然,我们应该理解,关联问题在很多情况下不是并行处理的优点所在,这在很大程度上与Amdahl定律相符合。

所以,从事务与关联的角度来关系型数据库的分区可扩展性为什么受限的原因是最为清楚的。而NoSQL数据库也正是因为弱化,甚至去除了像事务与关联(全面地讲,其实还有索引等特性)等在分布式环境中会严重影响系统可用性的功能,才获得了更好的水平可扩展性。

那么,如果将事务与关联也纳入CAP理论中一致性C的范畴的话,问题就很清楚了:关于“关系型数据库为了保证一致性C与可用性A,而不得不牺牲分区可容忍性P”的说法便是正确的了。但关于“NoSQL选择了C与P,或者A与P”的说法则是错误的,所有的NoSQL数据库在设计策略的大方向上都是选择了A与P(虽然对同一数据多个副本的读写一致性问题的设计各有不同),从来没有完全选择C与P的情况存在。

结论

现在看来,如果理解CAP理论只是指多个数据副本之间读写一致性的问题,那么它对关系型数据库与NoSQL数据库来讲是完全一样的,它只是运行在分布式环境中的数据管理设施在设计读写一致性问题时需要遵循的一个原则而已,却并不是NoSQL数据库具有优秀的水平可扩展性的真正原因。而如果将CAP理论中的一致性C理解为读写一致性、事务与关联操作的综合,则可以认为关系型数据库选择了C与A,而NoSQL数据库则全都是选择了A与P,但并没有选择C与P的情况存在。这才是用CAP理论来支持NoSQL数据库设计正确认识。

其实,这种认识正好与被广泛认同的NoSQL的另一个理论基础相吻合,即与ACID对着干的BASE(基本可用性、软状态与最终一致性)。因为BASE的含义正好是指“NoSQL数据库设计可以通过牺牲一定的数据一致性和容错性来换取高性能的保持甚至提高”,即NoSQL数据库都应该是牺牲C来换取P,而不是牺牲A。可用性A正好是所有NoSQL数据库都普遍追求的特性。

springcloud四个注册中心的比较

springcloud是一个非常优秀的微服务框架,要管理众多的服务,就需要对这些服务进行治理,也就是我们说的 服务治理 , 服务治理 的作用就是在传统的rpc远程调用框架中,管理每个服务与每个服务之间的依赖关系,可以实现服务调用、负载均衡、服务容错、以及服务的注册与发现。

如果微服务之间存在调用依赖,就需要得到目标服务的服务地址,也就是微服务治理的 服务发现 。要完成服务发现,就需要将服务信息存储到某个载体,载体本身即是微服务治理的 服务注册中心 ,而存储到载体的动作即是 服务注册 。

springcloud支持的注册中心有 Eureka 、 Zookeeper 、 Consul 、 Nacos

Spring Cloud Netflix 在设计 Eureka 时就紧遵AP原则,Eureka Server 也可以运行多个实例来构建集群,解决单点问题,但不同于 ZooKeeper 的选举 leader 的过程,Eureka Server 采用的是Peer to Peer 对等通信。这是一种去中心化的架构,无 master/slave 之分,每一个 Peer 都是对等的。在这种架构风格中,节点通过彼此互相注册来提高可用性,每个节点需要添加一个或多个有效的 serviceUrl 指向其他节点。每个节点都可被视为其他节点的副本。

在集群环境中如果某台 Eureka Server 宕机,Eureka Client 的请求会自动切换到新的 Eureka Server 节点上,当宕机的服务器重新恢复后,Eureka 会再次将其纳入到服务器集群管理之中。当节点开始接受客户端请求时,所有的操作都会在节点间进行复制(replicate To Peer)操作,将请求复制到该 Eureka Server 当前所知的其它所有节点中。

Eureka的集群中,只要有一台Eureka还在,就能保证注册服务可用(保证可用性),只不过查到的信息可能不是最新的(不保证强一致性)。除此之外,Eureka还有一种自我保护机制,如果在15分钟内超过85%的节点都没有正常的心跳,那么Eureka就认为客户端与注册中心出现了网络故障,此时会出现以下几种情况:

因此,Eureka可以很好的应对因网络故障导致部分节点失去联系的情况,而不会像zookeeper那样使得整个注册服务瘫痪

与 Eureka 有所不同,Apache Zookeeper 在设计时就紧遵CP原则,即任何时候对 Zookeeper 的访问请求能得到一致的数据结果,同时系统对网络分割具备容错性,但是 Zookeeper 不能保证每次服务请求都是可达的。从 Zookeeper 的实际应用情况来看,在使用 Zookeeper 获取服务列表时,如果此时的 Zookeeper 集群中的 Leader 宕机了,该集群就要进行 Leader 的选举,又或者 Zookeeper 集群中半数以上服务器节点不可用(例如有三个节点,如果节点一检测到节点三挂了 ,节点二也检测到节点三挂了,那这个节点才算是真的挂了),那么将无法处理该请求。所以说,Zookeeper 不能保证服务可用性。

Consul 是 HashiCorp 公司推出的开源工具,用于实现分布式系统的服务发现与配置。Consul 使用 Go 语言编写,因此具有天然可移植性(支持Linux、windows和Mac OS X)。Consul 内置了服务注册与发现框架、分布一致性协议实现、健康检查、Key/Value 存储、多数据中心方案,不再需要依赖其他工具(比如 ZooKeeper 等),使用起来也较为简单。

Consul 遵循CAP原理中的CP原则,保证了强一致性和分区容错性,且使用的是Raft算法,比zookeeper使用的Paxos算法更加简单。虽然保证了强一致性,但是可用性就相应下降了,例如服务注册的时间会稍长一些,因为 Consul 的 raft 协议要求必须过半数的节点都写入成功才认为注册成功 ;在leader挂掉了之后,重新选举出leader之前会导致Consul 服务不可用。

Nacos是阿里开源的,Nacos 支持基于 DNS 和基于 RPC 的服务发现。Nacos除了服务的注册发现之外,还支持动态配置服务。动态配置服务可以让您以中心化、外部化和动态化的方式管理所有环境的应用配置和服务配置。动态配置消除了配置变更时重新部署应用和服务的需要,让配置管理变得更加高效和敏捷。配置中心化管理让实现无状态服务变得更简单,让服务按需弹性扩展变得更容易。 一句话概括就是Nacos = 注册中心 + 配置中心。

这四个组件虽然都实现了注册中心的功能,但是他们的功能和实现方式都有不同的地方,也各有各的优点,单从注册中心方面来比价四个注册中心(如果不了解 CAP定理 可先阅读下一章节):

CAP原则的精髓就是要么AP,要么CP,要么AC,但是不存在CAP。如果在某个分布式系统中数据无副本, 那么系统必然满足强一致性条件, 因为只有独一数据,不会出现数据不一致的情况,此时C和P两要素具备,但是如果系统发生了网络分区状况或者宕机,必然导致某些数据不可以访问,此时可用性条件就不能被满足,即在此情况下获得了CP系统,但是CAP不可同时满足。

因此在进行分布式架构设计时,必须做出取舍。当前一般是通过分布式缓存中各节点的最终一致性来提高系统的性能,通过使用多节点之间的数据异步复制技术来实现集群化的数据一致性。通常使用类似 memcached 之类的 NOSQL 作为实现手段。虽然 memcached 也可以是分布式集群环境的,但是对于一份数据来说,它总是存储在某一台 memcached 服务器上。如果发生网络故障或是服务器死机,则存储在这台服务器上的所有数据都将不可访问。由于数据是存储在内存中的,重启服务器,将导致数据全部丢失。当然也可以自己实现一套机制,用来在分布式 memcached 之间进行数据的同步和持久化,但是实现难度是非常大的

例如,根据CAP定理将NoSql数据分成了满足CA原则、满足CP原则和满足AP原则的三大类:


当前题目:nosqlcap定理,nosql cap理论
网站链接:http://dzwzjz.com/article/dsdgoij.html
在线咨询
服务热线
服务热线:028-86922220
TOP