大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
执行大数据[注]项目的企业面对的关键决策之一是使用哪个数据库,SQL还是NoSQL?SQL有着骄人的业绩,庞大的安装基础;而NoSQL正在获得可观的收益,且有很多支持者。我们来看看两位专家对这个问题的看法。
目前成都创新互联已为上千的企业提供了网站建设、域名、网络空间、网站托管、服务器托管、企业网站设计、邕宁网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。
专家
·VoltDB公司首席技术官Ryan Betts表示,SQL已经赢得了大型企业的广泛部署,大数据是它可以支持的另一个领域。
·Couchbase公司首席执行官Bob Wiederhold表示,NoSQL是可行的选择,并且从很多方面来看,它是大数据的最佳选择,特别是涉及到可扩展性时。
SQL经历时间的考验,并仍然在蓬勃发展
VoltDB公司首席技术官Ryan Betts
结构化查询语言(SQL)是经过时间考验的胜利者,它已经主宰了几十年,目前大数据公司和组织(例如谷歌、Facebook、Cloudera和Apache)正在积极投资于SQL。
在成为主导技术(例如SQL)后,有时候我们很容易忘记其优越性。SQL的独特优势包括:
1. SQL能够加强与数据的交互,并允许对单个数据库设计提出问题。这是很关键的特征,因为无法交互的数据基本上是没用的,并且,增强的交互性能够带来新的见解、新的问题和更有意义的未来交互。
2. SQL是标准化的,使用户能够跨系统运用他们的知识,并对第三方附件和工具提供支持。
3. SQL能够扩展,并且是多功能和经过时间验证的,这能够解决从快写为主导的传输到扫描密集型深入分析等问题。
4. SQL对数据呈现和存储采用正交形式,一些SQL系统支持JSON和其他结构化对象格式,比NoSQL具有更好的性能和更多功能。
虽然NoSQL的出现带来了一些影响,但SQL仍然主导着市场,并在大数据领域赢得了很多投资和广泛部署。
NoSQL的说法很含糊,对于本次讨论,我借用Rick Cattell对NoSQL的定义,即提供简单操作(例如密钥/数值存储)或简单记录和索引,并专注于这些简单操作的横向可扩展性的系统。
很显然,现在很多新的数据库并不是都一样,认识每种数据库背后的原理以及潜在问题是成功的关键。NoSQL的主要特点使其更适合于特定的问题。例如,图形数据库更适合于数据通过关系组织的情况,而专门的文本搜索系统更适合于需要实时搜索的情况。
在这里,让我们看看SQL系统的主要优势和差异化功能:
* SQL可实现交互性。 SQL是一种声明性查询语言。用户说出他们想要什么(例如,显示过去五年三月份期间顶级客户的地理位置),数据库内部就会构件算法并提取请求的结果。相比之下,NoSQL编程创新MapReduce是一种程序性查询技术。在用户提出请求时,MapReduce要求用户不仅说出自己想要什么,而且要求他们陈述如何产生答案。
这听起来像一个无趣的技术差异,但这很关键,原因在于:首先,声明性SQL查询更容易通过图形化工具以及点击报告构建器来构建。这让分析师、操作员、管理者和其他不具备软件编程能力的员工进行数据库查询;其次,数据库引擎可以利用内部信息来选择最有效的算法。改变数据库的物理布局或数据库,最佳算法仍然能够计算出来。而在程序性系统中,编程人员需要重新访问和重新编程算法,这是非常昂贵且容易出错的过程。
市场理解这个关键区别。在2010年,谷歌宣布部署SQL来补充MapReduce,主要受内部用户需求所驱动。最近,Facebook发布了Presto(一种SQL部署)来查询其PB级HDFS集群。根据Facebook表示:“随着我们的仓库增长到PB级,以及我们的需求变化,我们清楚地意识到,我们需要一个提供低延时查询的互动系统。”此外,Cloudera也正在构建Impala—另一个基于HDFS的SQL部署。
* SQL是标准化的。 虽然供应商有时候会添加自己的语言到SQL界面,但SQL的核心是标准化的,还有其他规格(例如ODBC和JDBC)提供广泛可用的稳定界面到SQL存储。这带来了一个管理和操作工具生态系统,可以在SQL系统之上设计、监控、检查、探索和构建应用程序。
SQL用户和程序员可用跨多个后端系统重复使用其API和UI知识,减少了应用程序的开发时间。标准化还允许声明性第三方提取、转换、加载(ETL)工具,使企业可以在数据库之间以及跨系统传输数据。
* SQL可扩展。 认为SQL必须牺牲以获得可扩展性的看法,完全是错误的。如前所述,Facebook创建了一个SQL界面来查询PB级数据。SQL能够非常有效地运行极快的ACID传输。SQL对数据存储和索引提供的抽象[注]化允许跨各种问题和数据集大小的一致使用,让SQL可以跨集群复制数据存储有效地运行。使用SQL作为界面独立于构建云、规模或HA系统,SQL中并没有什么在阻止和限制容错、高可用性和复制。事实上,所有现代SQL系统支持云友好型横向可扩展性、复制和容错性。
* SQL支持JSON。 几年前,很多SQL系统增加了XML文档支持。现在,随着JSON成为一种流行的数据交换格式,SQL供应商也纷纷加入了JSON型的支持。基于现在灵活的编程过程和web基础设施的正常运行时间要求,我们很需要结构化数据类型的支持。Oracle 12c、PostgreSQL 9.2、VoltDB和其他支持JSON的数据库,通常具有优于“原生”JSON的性能。
SQL将继续赢得市场份额,并会继续看到新的投资和部署。NoSQL数据库提供专有查询语言或简单的键值语义,而没有更深层次的技术差异化。现代SQL系统提供可扩展性的同时,还支持更丰富的查询语义,并有庞大的用户安装基础,广泛的生态系统整合和深度企业部署。
NoSQL更适合大数据应用程序
Couchbase公司首席执行官Bob Wiederhold
NoSQL越来越多地被认为是关系型数据库的可行替代品,特别是对于大数据应用程序。此外,无模式数据模型通常更适合于现在捕捉和处理的数据种类和类型。
当我们谈论NoSQL领域的大数据时,我们指的是从操作数据库读取和写入。不要将操作数据库与分析数据库混淆,这通常会查看大量数据,并从这些数据获取可视性。
虽然操作数据库的大数据看起来不具有可分析性,但操作数据库通常会存储超大量用户的大型数据集,这些用户经常需要访问数据来实时执行交易。这种数据库的操作规模也解释了NoSQL的关键特性,也就是为什么NoSQL是大数据应用程序的关键的原因。
NoSQL是可扩展性的关键
每次技术行业经历硬件发展的根本性转变时,都会出现一个拐点。在数据库领域,从纵向扩展到横向扩展的转变推动了NoSQL的发展。关系型数据库(包括来自甲骨文和IBM的数据库)是纵向扩展。也就是说,它们是集中式、共享一切的技术,只能通过增加更多昂贵的硬件来扩展。
而NoSQL数据库是分布式横向扩展技术。它们使用了分布式节点集(称为集群)来提供高度弹性扩展功能,让用户可以添加节点来动态处理负载。
分布式横向扩展的做法通常要比纵向做法更加便宜。商业关系型数据库的授权费用也让人望而却步,因为他们的价格是按每台服务器来计算。另一方面,NoSQL数据库通常是开源技术,按照运行的服务器集群收费,而且价格相对便宜。
NoSQL是灵活性的关键
关系型数据库和NoSQL数据模型有很大的不同。关系型模式获取数据,并将数据分配到很多相互关联的表中,这些表通过外键相互应用。
当用户需要对数据集运行查询时,所需信息需要从多个表中收集(通常涉及数百个企业应用程序),并结合这些信息,再提供给应用程序。同样地,当写入数据时,需要在多个表协调和执行写入。当数据相对较少,并且,数据以较慢速度流入数据库时,关系型数据库通常能够捕捉和存储信息。然而,现在的应用程序通常需要快速写入(和读取)海量数据。
NoSQL数据库采用非常不同的模式。在其核心,NoSQL数据库其实是“NoREL”,或者说非关系型,这意味着它们没有依赖于表以及表之间的联系,以存储和组织信息。例如,以文档为导向的NoSQL数据库获取你想要存储的数据,并采用JSON格式整合到文档中。每个JSON文档可以被你的应用程序视为一个对象。JSON文档可能会提取跨越25个表的数据,将数据集成到一个文档中。
聚合这些信息可能会导致信息重复,但由于存储已不再是一个成本问题,数据模型灵活性、发布所产生文档的简便性以及读取和写入性能提高,让这成为不错的选择。
NoSQL是大数据应用程序的关键
通过第三方(包括社交媒体网站),数据正变得越来越容易捕捉和访问。这些数据包括:个人用户信息、地理位置数据、用户生产的内容、机器记录数据和传感器产生的数据。企业还可以依赖于大数据来推动其关键任务型应用程序。同时,企业正在转向到NoSQL数据库,因为这种数据库非常适合现在新型的数据类型。
开发人员想要一个灵活的数据库,可以很容易适应新的数据类型,并且,不会受第三方数据供应商的内容结构变化的影响。大多数新数据是非结构化和半结构化,因此,开发人员也需要能够有效存储这些数据的数据库。然而,关系型数据库采用的严格定义的基于模式的做法让其不可能快速整合新数据类型,并且很不适合于非结构化和半结构化数据。
总体来说,随着web和移动应用程序的增加、新的趋势、网上消费者行为的转变以及新的数据类型的出现,行业需要能够提供可扩展的灵活的数据库技术来管理和访问数据。NoSQL技术是有效满足这些需求的唯一可行解决方案。
1、数据存储方式不同。
关系型和非关系型数据库的主要差异是数据存储的方式。关系型数据天然就是表格式的,因此存储在数据表的行和列中。数据表可以彼此关联协作存储,也很容易提取数据。
与其相反,非关系型数据不适合存储在数据表的行和列中,而是大块组合在一起。非关系型数据通常存储在数据集中,就像文档、键值对或者图结构。你的数据及其特性是选择数据存储和提取方式的首要影响因素。
2、扩展方式不同。
SQL和NoSQL数据库最大的差别可能是在扩展方式上,要支持日益增长的需求当然要扩展。
要支持更多并发量,SQL数据库是纵向扩展,也就是说提高处理能力,使用速度更快速的计算机,这样处理相同的数据集就更快了。
因为数据存储在关系表中,操作的性能瓶颈可能涉及很多个表,这都需要通过提高计算机性能来客服。虽然SQL数据库有很大扩展空间,但最终肯定会达到纵向扩展的上限。而NoSQL数据库是横向扩展的。
而非关系型数据存储天然就是分布式的,NoSQL数据库的扩展可以通过给资源池添加更多普通的数据库服务器(节点)来分担负载。
3、对事务性的支持不同。
如果数据操作需要高事务性或者复杂数据查询需要控制执行计划,那么传统的SQL数据库从性能和稳定性方面考虑是你的最佳选择。SQL数据库支持对事务原子性细粒度控制,并且易于回滚事务。
虽然NoSQL数据库也可以使用事务操作,但稳定性方面没法和关系型数据库比较,所以它们真正闪亮的价值是在操作的扩展性和大数据量处理方面。
参考资料来源:百度百科——关系型数据库
参考资料来源:百度百科——非关系型数据库
关系型数据库的局限性如下:
1、无法引用对象。
在关系型数据库中,通过SQL语言或视图可以表达属性值为对象的这个意思。但数据库本身并不能表达出来,需要人为设定,如果数据库设计者忘记了当初的设定,那数据库里的内容就失去含义了。我们需要的是一个本身能进行更复杂表达的数据组织方法。
如果是在编程语言中,一个对象可以将其地址赋给变量,能够直接描述对象与对象的关系。
2、相对固定的关系。
作为实体,可以设置不同的二维表结构,可以存放各种各样的实体,但关系的表达取决于设计者的认识。也就是说,是人为设定的关系。
关系数据库需要SQL或视图(本质也是SQL)来定义和描述关系,不能随需要变化。
3、相对固定的概念分类。
当变化发生时,数据库的一部分就只能重新设计,一个表需要拆分为两个表。这种变动会导致一系列的变化,程序、界面、文档、教程。
关系数据库对世界认知的相对固定性与世界的动态性有些不合时宜。如此说来,以JavaScript为代表的动态脚本语言就解决了这一问题,可以随着世界的变化随意定义属性。
扩展资料:
关系型数据库和非关系型数据库的区别:
1、数据存储方式不同。
关系型和非关系型数据库的主要差异是数据存储的方式。关系型数据天然就是表格式的,因此存储在数据表的行和列中。
与其相反,非关系型数据不适合存储在数据表的行和列中,而是大块组合在一起。非关系型数据通常存储在数据集中,就像文档、键值对或者图结构。
2、扩展方式不同。
要支持更多并发量,SQL数据库是纵向扩展,也就是说提高处理能力,使用速度更快速的计算机,这样处理相同的数据集就更快了。
虽然SQL数据库有很大扩展空间,但最终肯定会达到纵向扩展的上限。而NoSQL数据库是横向扩展的。非关系型数据存储天然就是分布式的,NoSQL数据库的扩展可以通过给资源池添加更多普通的数据库服务器(节点)来分担负载。
3、对事务性的支持不同。
SQL数据库支持对事务原子性细粒度控制,并且易于回滚事务。
虽然NoSQL数据库也可以使用事务操作,但稳定性方面没法和关系型数据库比较,所以其价值是在操作的扩展性和大数据量处理方面。
参考资料来源:
百度百科-非关系型数据库
百度百科-关系型数据库
通常来说,当数据多、并发量大的时候,架构中可以引入Redis,帮助提升架构的整体性能,减少Mysql(或其他数据库)的压力,但不是使用Redis,就不用MySQL。
因为Redis的性能十分优越,可以支持每秒十几万此的读/写操作,并且它还支持持久化、集群部署、分布式、主从同步等,Redis在高并发的场景下数据的安全和一致性,所以它经常用于两个场景:
缓存
判断数据是否适合缓存到Redis中,可以从几个方面考虑: 会经常查询么?命中率如何?写操作多么?数据大小?
我们经常采用这样的方式将数据刷到Redis中:查询的请求过来,现在Redis中查询,如果查询不到,就查询数据库拿到数据,再放到缓存中,这样第二次相同的查询请求过来,就可以直接在Redis中拿到数据;不过要注意【缓存穿透】的问题。
缓存的刷新会比较复杂,通常是修改完数据库之后,还需要对Redis中的数据进行操作;代码很简单,但是需要保证这两步为同一事务,或最终的事务一致性。
高速读写
常见的就是计数器,比如一篇文章的阅读量,不可能每一次阅读就在数据库里面update一次。
高并发的场景很适合使用Redis,比如双11秒杀,库存一共就一千件,到了秒杀的时间,通常会在极为短暂的时间内,有数万级的请求达到服务器,如果使用数据库的话,很可能在这一瞬间造成数据库的崩溃,所以通常会使用Redis(秒杀的场景会比较复杂,Redis只是其中之一,例如如果请求超过某个数量的时候,多余的请求就会被限流)。
这种高并发的场景,是当请求达到服务器的时候,直接在Redis上读写,请求不会访问到数据库;程序会在合适的时间,比如一千件库存都被秒杀,再将数据批量写到数据库中。
所以通常来说,在必要的时候引入Redis,可以减少MySQL(或其他)数据库的压力,两者不是替代的关系 。
我将持续分享Java开发、架构设计、程序员职业发展等方面的见解,希望能得到你的关注。
Redis和MySQL的应用场景是不同的。
通常来说,没有说用Redis就不用MySQL的这种情况。
因为Redis是一种非关系型数据库(NoSQL),而MySQL是一种关系型数据库。
和Redis同类的数据库还有MongoDB和Memchache(其实并没有持久化数据)
那关系型数据库现在常用的一般有MySQL,SQL Server,Oracle。
我们先来了解一下关系型数据库和非关系型数据库的区别吧。
1.存储方式
关系型数据库是表格式的,因此存储在表的行和列中。他们之间很容易关联协作存储,提取数据很方便。而Nosql数据库则与其相反,他是大块的组合在一起。通常存储在数据集中,就像文档、键值对或者图结构。
2.存储结构
关系型数据库对应的是结构化数据,数据表都预先定义了结构(列的定义),结构描述了数据的形式和内容。这一点对数据建模至关重要,虽然预定义结构带来了可靠性和稳定性,但是修改这些数据比较困难。而Nosql数据库基于动态结构,使用与非结构化数据。因为Nosql数据库是动态结构,可以很容易适应数据类型和结构的变化。
3.存储规范
关系型数据库的数据存储为了更高的规范性,把数据分割为最小的关系表以避免重复,获得精简的空间利用。虽然管理起来很清晰,但是单个操作设计到多张表的时候,数据管理就显得有点麻烦。而Nosql数据存储在平面数据集中,数据经常可能会重复。单个数据库很少被分隔开,而是存储成了一个整体,这样整块数据更加便于读写
4.存储扩展
这可能是两者之间最大的区别,关系型数据库是纵向扩展,也就是说想要提高处理能力,要使用速度更快的计算机。因为数据存储在关系表中,操作的性能瓶颈可能涉及到多个表,需要通过提升计算机性能来克服。虽然有很大的扩展空间,但是最终会达到纵向扩展的上限。而Nosql数据库是横向扩展的,它的存储天然就是分布式的,可以通过给资源池添加更多的普通数据库服务器来分担负载。
5.查询方式
关系型数据库通过结构化查询语言来操作数据库(就是我们通常说的SQL)。SQL支持数据库CURD操作的功能非常强大,是业界的标准用法。而Nosql查询以块为单元操作数据,使用的是非结构化查询语言(UnQl),它是没有标准的。关系型数据库表中主键的概念对应Nosql中存储文档的ID。关系型数据库使用预定义优化方式(比如索引)来加快查询操作,而Nosql更简单更精确的数据访问模式。
6.事务
关系型数据库遵循ACID规则(原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability)),而Nosql数据库遵循BASE原则(基本可用(Basically Availble)、软/柔性事务(Soft-state )、最终一致性(Eventual Consistency))。由于关系型数据库的数据强一致性,所以对事务的支持很好。关系型数据库支持对事务原子性细粒度控制,并且易于回滚事务。而Nosql数据库是在CAP(一致性、可用性、分区容忍度)中任选两项,因为基于节点的分布式系统中,很难全部满足,所以对事务的支持不是很好,虽然也可以使用事务,但是并不是Nosql的闪光点。
7.性能
关系型数据库为了维护数据的一致性付出了巨大的代价,读写性能比较差。在面对高并发读写性能非常差,面对海量数据的时候效率非常低。而Nosql存储的格式都是key-value类型的,并且存储在内存中,非常容易存储,而且对于数据的 一致性是 弱要求。Nosql无需sql的解析,提高了读写性能。
8.授权方式
大多数的关系型数据库都是付费的并且价格昂贵,成本较大(MySQL是开源的,所以应用的场景最多),而Nosql数据库通常都是开源的。
所以,在实际的应用环境中,我们一般会使用MySQL存储我们的业务过程中的数据,因为这些数据之间的关系比较复杂,我们常常会需要在查询一个表的数据时候,将其他关系表的数据查询出来,例如,查询某个用户的订单,那至少是需要用户表和订单表的数据。
查询某个商品的销售数据,那可能就会需要用户表,订单表,订单明细表,商品表等等。
而在这样的使用场景中,我们使用Redis来存储的话,也就是KeyValue形式存储的话,其实并不能满足我们的需要。
即使Redis的读取效率再高,我们也没法用。
但,对于某些没有关联少,且需要高频率读写,我们使用Redis就能够很好的提高整个体统的并发能力。
例如商品的库存信息,我们虽然在MySQL中会有这样的字段,但是我们并不想MySQL的数据库被高频的读写,因为使用这样会导致我的商品表或者库存表IO非常高,从而影响整个体统的效率。
所以,对于这样的数据,且有没有什么复杂逻辑关系(就只是隶属于SKU)的数据,我们就可以放在Redis里面,下单直接在Redis中减掉库存,这样,我们的订单的并发能力就能够提高了。
个人觉得应该站出来更正一下,相反的数据量大,更不应该用redis。
为什么?
因为redis是内存型数据库啊,是放在内存里的。
设想一下,假如你的电脑100G的资料,都用redis来存储,那么你需要100G以上的内存!
使用场景
Redis最明显的用例之一是将其用作缓存。只是保存热数据,或者具有过期的cache。
例如facebook,使用Memcached来作为其会话缓存。
总之,没有见过哪个大公司数据量大了,换掉mysql用redis的。
题主你错了,不是用redis代替MySQL,而是引入redis来优化。
BAT里越来越多的项目组已经采用了redis+MySQL的架构来开发平台工具。
如题主所说,当数据多的时候,MySQL的查询效率会大打折扣。我们通常默认如果查询的字段包含索引的话,返回是毫秒级别的。但是在实际工作中,我曾经遇到过一张包含10个字段的表,1800万+条数据,当某种场景下,我们不得不根据一个未加索引的字段进行精确查询的时候,单条sql语句的执行时长有时能够达到2min以上,就更别提如果用like这种模糊查询的话,其效率将会多么低下。
我们最开始是希望能够通过增加索引的方式解决,但是面对千万级别的数据量,我们也不敢贸然加索引,因为一旦数据库hang住,期间的所有数据库写入请求都会被放到等待队列中,如果请求是通过http请求发过来的,很有可能导致服务发生分钟级别的超时不响应。
经过一番调研,最终敲定的解决方案是引入redis作为缓存。redis具有运行效率高,数据查询速度快,支持多种存储类型以及事务等优势,我们把经常读取,而不经常改动的数据放入redis中,服务器读取这类数据的时候时候,直接与redis通信,极大的缓解了MySQL的压力。
然而,我在上面也说了,是redis+MySQL结合的方式,而不是替代。原因就是redis虽然读写很快,但是不适合做数据持久层,主要原因是使用redis做数据落盘是要以效率作为代价的,即每隔制定的时间,redis就要去进行数据备份/落盘,这对于单线程的它来说,势必会因“分心”而影响效率,结果得不偿失。
楼主你好,首先纠正下,数据多并不是一定就用Redis,Redis归属于NoSQL数据库中,其特点拥有高性能读写数据速度,主要解决业务效率瓶颈。下面就详细说下Redis的相比MySQL优点。( 关于Redis详细了解参见我近期文章: )
读写异常快
Redis非常快,每秒可执行大约10万次的读写速度。
丰富的数据类型
Redis支持丰富的数据类型,有二进制字符串、列表、集合、排序集和散列等等。这使得Redis很容易被用来解决各种问题,因为我们知道哪些问题可以更好使用地哪些数据类型来处理解决。
原子性
Redis的所有操作都是原子操作,这确保如果两个客户端并发访问,Redis服务器能接收更新的值。
丰富实用工具 支持异机主从复制
Redis支持主从复制的配置,它可以实现主服务器的完全拷贝。
以上为开发者青睐Redis的主要几个可取之处。但是,请注意实际生产环境中企业都是结合Redis和MySQL的特定进行不同应用场景的取舍。 如缓存——热数据、计数器、消息队列(与ActiveMQ,RocketMQ等工具类似)、位操作(大数据处理)、分布式锁与单线程机制、最新列表(如新闻列表页面最新的新闻列表)以及排行榜等等 可以看见Redis大显身手的场景。可是对于严谨的数据准确度和复杂的关系型应用MySQL等关系型数据库依然不可替。
web应用中一般采用MySQL+Redis的方式,web应用每次先访问Redis,如果没有找到数据,才去访问MySQL。
本质区别
1、mysql:数据放在磁盘 redis:数据放在内存。
首先要知道mysql存储在磁盘里,redis存储在内存里,redis既可以用来做持久存储,也可以做缓存,而目前大多数公司的存储都是mysql + redis,mysql作为主存储,redis作为辅助存储被用作缓存,加快访问读取的速度,提高性能。
使用场景区别
1、mysql支持sql查询,可以实现一些关联的查询以及统计;
2、redis对内存要求比较高,在有限的条件下不能把所有数据都放在redis;
3、mysql偏向于存数据,redis偏向于快速取数据,但redis查询复杂的表关系时不如mysql,所以可以把热门的数据放redis,mysql存基本数据。
mysql的运行机制
mysql作为持久化存储的关系型数据库,相对薄弱的地方在于每次请求访问数据库时,都存在着I/O操作,如果反复频繁的访问数据库。第一:会在反复链接数据库上花费大量时间,从而导致运行效率过慢;第二:反复地访问数据库也会导致数据库的负载过高,那么此时缓存的概念就衍生了出来。
Redis持久化
由于Redis的数据都存放在内存中,如果没有配置持久化,redis重启后数据就全丢失了,于是需要开启redis的持久化功能,将数据保存到磁盘上,当redis重启后,可以从磁盘中恢复数据。redis提供两种方式进行持久化,一种是RDB持久化(原理是将Reids在内存中的数据库记录定时dump到磁盘上的RDB持久化),另外一种是AOF(append only file)持久化(原理是将Reids的操作日志以追加的方式写入文件)。
redis是放在内存的~!
数据量多少绝对不是选择redis和mysql的准则,因为无论是mysql和redis都可以集群扩展,约束它们的只是硬件(即你有没有那么多钱搭建上千个组成的集群),我个人觉得数据读取的快慢可能是选择的标准之一,另外工作中往往是两者同是使用,因为mysql存储在硬盘,做持久化存储,而redis存储在内存中做缓存提升效率。
关系型数据库是必不可少的,因为只有关系型数据库才能提供给你各种各样的查询方式。如果有一系列的数据会频繁的查询,那么就用redis进行非持久化的存储,以供查询使用,是解决并发性能问题的其中一个手段
“NoSQL,指的是非关系型的数据库。NoSQL有时也称作Not Only SQL的缩写,是对不同于传统的关系型数据库的数据库管理系统的统称。NoSQL用于超大规模数据的存储。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。”
常见的关系型数据库管理系统产品有Oracle、SQL Server、Sybase、DB2、Access等。 1.Oracle
Oracle是1983年推出的世界上第一个开放式商品化关系型数据库管理系统。它采用标准的SQL结构化查询语言,支持多种数据类型,提供面向对象存储的数据支持,具有第四代语言开发工具,支持Unix、Windows NT、OS/2、Novell等多种平台。除此之外,它还具有很好的并行处理功能。Oracle产品主要由Oracle服务器产品、Oracle开发工具、Oracle应用软件组成,也有基于微机的数据库产品。主要满足对银行、金融、保险等企业、事业开发大型数据库的需求。
2.SQL Server
SQL即结构化查询语言(Structured Query Language,简称为SQL)。SQL Server最早出现在1988年,当时只能在OS/2操作系统上运行。2000年12月微软发布了SQL Server 2000,该软件可以运行于Windows NT/2000/XP等多种操作系统之上,是支持客户机/服务器结构的数据库管理系统,它可以帮助各种规模的企业管理数据。
随着用户群的不断增大,SQL Server在易用性、可靠性、可收缩性、支持数据仓库、系统集成等方面日趋完美。特别是SQL Server的数据库搜索引擎,可以在绝大多数的操作系统之上运行,并针对海量数据的查询进行了优化。目前SQL Server已经成为应用最广泛的数据库产品之一。
由于使用SQL Server不但要掌握SQL Server的操作,而且还要能熟练掌握Windows NT/2000 Server的运行机制,以及SQL语言,所以对非专业人员的学习和使用有一定的难度。
3.Sybase
1987年推出的大型关系型数据库管理系统Sybase,能运行于OS/2、Unix、Windows NT等多种平台,它支持标准的关系型数据库语言SQL,使用客户机/服务器模式,采用开放体系结构,能实现网络环境下各节点上服务器的数据库互访操作。技术先进、性能优良,是开发大中型数据库的工具。Sybase产品主要由服务器产品Sybase SQL Server、客户产品Sybase SQL Toolset和接口软件Sybase Client/Server Interface组成,还有著名的数据库应用开发工具PowerBuilder。
4.DB2
DB2是基于SQL的关系型数据库产品。20世纪80年代初期DB2的重点放在大型的主机平台上。到90年代初,DB2发展到中型机、小型机以及微机平台。DB2适用于各种硬件与软件平台。各种平台上的DB2有共同的应用程序接口,运行在一种平台上的程序可以很容易地移植到其他平台。DB2的用户主要分布在金融、商业、铁路、航空、医院、旅游等各个领域,以金融系统的应用最为突出。
5.Access
Access是在Windows操作系统下工作的关系型数据库管理系统。它采用了Windows程序设计理念,以Windows特有的技术设计查询、用户界面、报表等数据对象,内嵌了VBA(全称为Visual Basic Application)程序设计语言,具有集成的开发环境。Access提供图形化的查询工具和屏幕、报表生成器,用户建立复杂的报表、界面无需编程和了解SQL语言,它会自动生成SQL代码。
Access被集成到Office中,具有Office系列软件的一般特点,如菜单、工具栏等。与其他数据库管理系统软件相比,更加简单易学,一个普通的计算机用户,没有程序语言基础,仍然可以快速地掌握和使用它。最重要的一点是,Access的功能比较强大,足以应付一般的数据管理及处理需要,适用于中小型企业数据管理的需求。当然,在数据定义、数据安全可靠、数据有效控制等方面,它比前面几种数据库产品要逊色不少。