大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
GO分析有三个过程,GO_CC细胞组分,GO_BP生物过程, GO_MP分析功能,首先转换成 ENTREZID ,然后利用 clusterProfiler 函数。
成都创新互联"三网合一"的企业建站思路。企业可建设拥有电脑版、微信版、手机版的企业网站。实现跨屏营销,产品发布一步更新,电脑网络+移动网络一网打尽,满足企业的营销需求!成都创新互联具备承接各种类型的网站设计、成都网站建设项目的能力。经过十多年的努力的开拓,为不同行业的企事业单位提供了优质的服务,并获得了客户的一致好评。
很明显,这些差异的基因必然与功能改变密切相关,例如,比较患病个体与正常个体的组织表达谱,不难想到这些表达显著改变的基因参与了疾病或免疫相关的生物学过程、信号通路等,基因表达水平的失调与疾病肯定密不可分。
蛋白质或者基因可以通过ID对应或者序列注释的方法找到与之对应的GO号,而GO号可对于到Term,即功能类别或者细胞定位。 功能富集分析: 功能富集需要有一个参考数据集,通过该项分析可以找出在统计上显著富集的GO Term。
进行GO分析时,需要考虑的一个基础因素就是基因的GO注释信息从何处获取。
调查是科学探究常用的方法之一,是了解生物种类、生存环境和外部形态等常用的研究方法。调查法一般是在自然的过程中进行的,通过访问、座谈、问卷、测验和查阅书面材料等方式去搜集反映研究对象的材料。
最近有粉丝反映说,利用clusterProfiler这个包绘制GO富集分析气泡图和柱形图的时候,发现GO条目的名字都重叠在一起了。气泡图 柱形图 这个图别说美观了,简直不忍直视。经过我的认真研究,发现跟R版本有关。
但是该方法存在一个很大的问题,那就是当x轴标签数量很多时,那么就无法通过这样的方法进行解决了。方法二是方法一的逆向思路,既然可以调大画布,那么反过来,我们也可以调小x轴标签字体。
最近小Q在做自然选择分析,分析完之后简单粗暴的对候选基因做了富集分析,并做了展示,比起气泡图,我模仿了另一种作图方式,显示效果更佳。所以想在此分享一下如何用R语言画富集分析示意图(非气泡图)。
在是否需要构建的问题上,我看到徐洲更在 功能注释后如何做富集分析 中提到 “你不需要构建Orgdb,因为Orgdb的用途是进行基因编号和GO/KEGG的转换。
单细胞富集分析我最常用的是 分组GSVA ,但最近用到了GO分析,就复习一下GO和KEGG富集分析及绘图。载入无比熟悉的pbmc.3k数据集 (已注释好,数据准备见 monocle )pbmc3k数据集只有1个样本,没办法区分HC和病例组。
1、先加载相关的package 然后提取想要的基因集,变成list 然后进行富集分析 需要注意的点:expr输入的表达矩阵必须为:SummarizedExperiment或者SingleCellExperiment ExpressionSet 或者别的什么对象。
2、通过选择菜单:程序包-安装程序包-在弹出的对话框中,选择你要安装的包,然后确定。使用命令install.packages(package_name,dir)package_name:是指定要安装的包名,请注意大小写。dir:包安装的路径。
3、一般的VCF文件都很大,用手动提取里面的信息肯定不大现实。用 vcfR 就可以轻松实现。vcfR 自带测试文件 vcfR_test 。就用这个文件来操作一下吧。
4、已经很久没有再用R语言跑过数据了,最近有朋友需要跑GSVA,顺便重温了下R,现将内容分享如下。GSVA全名Gene set variation analysis(基因集变异分析),是一种非参数,无监督的算法。
5、Step 1: R 包安装和数据输入 首先是安装必须 R 包,在这里我们需要用到 ggcorplot 和 ggthemes 这两个R包。然后我们读入R表达谱数据。