大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
什么是进程
创新互联从2013年成立,先为江北等服务建站,江北等地企业,进行企业商务咨询服务。为江北企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。
进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础。在早期面向进程设计的计算机结构中,进程是程序的基本执行实体;在当代面向线程设计的计算机结构中,进程是线程的容器。程序是指令、数据及其组织形式的描述,进程是程序的实体。
狭义定义:进程是正在运行的程序的实例(an instance of a computer program that is being executed)。
广义定义:进程是一个具有一定独立功能的程序关于某个数据集合的一次运行活动。它是操作系统动态执行的基本单元,在传统的操作系统中,进程既是基本的分配单元,也是基本的执行单元。
进程的概念主要有两点:第一,进程是一个实体。每一个进程都有它自己的地址空间,一般情况下,包括文本区域(text region)、数据区域(data region)和堆栈(stack region)。文本区域存储处理器执行的代码;数据区域存储变量和进程执行期间使用的动态分配的内存;堆栈区域存储着活动过程调用的指令和本地变量。第二,进程是一个“执行中的程序”。程序是一个没有生命的实体,只有处理器赋予程序生命时(操作系统执行之),它才能成为一个活动的实体,我们称其为进程。
相关推荐:《Python视频教程》
程序和进程的关系
编写完毕的代码,在没有运?的时候,称之为程序。
正在运行着的代码,就成为进程。
进程除了包含代码以外还有需要运行的环境等所以和程序是有区别的。
相关推荐:
Python中的多进程是什么
上篇文章简单介绍了multiprocessing模块,本文将要介绍进程之间的数据共享和信息传递的概念。
在多进程处理中,所有新创建的进程都会有这两个特点:独立运行,有自己的内存空间。
我们来举个例子展示一下:
这个程序的输出结果是:
在上面的程序中我们尝试在两个地方打印全局列表result的内容:
我们再用一张图来帮助理解记忆不同进程间的数据关系:
如果程序需要在不同的进程之间共享一些数据的话,该怎么做呢?不用担心,multiprocessing模块提供了Array对象和Value对象,用来在进程之间共享数据。
所谓Array对象和Value对象分别是指从共享内存中分配的ctypes数组和对象。我们直接来看一个例子,展示如何用Array对象和Value对象在进程之间共享数据:
程序输出的结果如下:
成功了!主程序和p1进程输出了同样的结果,说明程序中确实完成了不同进程间的数据共享。那么我们来详细看一下上面的程序做了什么:
在主程序中我们首先创建了一个Array对象:
向这个对象输入的第一个参数是数据类型:i表示整数,d代表浮点数。第二个参数是数组的大小,在这个例子中我们创建了包含4个元素的数组。
类似的,我们创建了一个Value对象:
我们只对Value对象输入了一个参数,那就是数据类型,与上述的方法一致。当然,我们还可以对其指定一个初始值(比如10),就像这样:
随后,我们在创建进程对象时,将刚创建好的两个对象:result和square_sum作为参数输入给进程:
在函数中result元素通过索引进行数组赋值,square_sum通过 value 属性进行赋值。
注意:为了完整打印result数组的结果,需要使用 result[:] 进行打印,而square_sum也需要使用 value 属性进行打印:
每当python程序启动时,同时也会启动一个服务器进程。随后,只要我们需要生成一个新进程,父进程就会连接到服务器并请求它派生一个新进程。这个服务器进程可以保存Python对象,并允许其他进程使用代理来操作它们。
multiprocessing模块提供了能够控制服务器进程的Manager类。所以,Manager类也提供了一种创建可以在不同流程之间共享的数据的方法。
服务器进程管理器比使用共享内存对象更灵活,因为它们可以支持任意对象类型,如列表、字典、队列、值、数组等。此外,单个管理器可以由网络上不同计算机上的进程共享。
但是,服务器进程管理器的速度比使用共享内存要慢。
让我们来看一个例子:
这个程序的输出结果是:
我们来理解一下这个程序做了什么:首先我们创建了一个manager对象
在with语句下的所有行,都是在manager对象的范围内的。接下来我们使用这个manager对象创建了列表(类似的,我们还可以用 manager.dict() 创建字典)。
最后我们创建了进程p1(用于在records列表中插入一条新的record)和p2(将records打印出来),并将records作为参数进行传递。
服务器进程的概念再次用下图总结一下:
为了能使多个流程能够正常工作,常常需要在它们之间进行一些通信,以便能够划分工作并汇总最后的结果。multiprocessing模块支持进程之间的两种通信通道:Queue和Pipe。
使用队列来回处理多进程之间的通信是一种比较简单的方法。任何Python对象都可以使用队列进行传递。我们来看一个例子:
上面这个程序的输出结果是:
我们来看一下上面这个程序到底做了什么。首先我们创建了一个Queue对象:
然后,将这个空的Queue对象输入square_list函数。该函数会将列表中的数平方,再使用 put() 方法放入队列中:
随后使用 get() 方法,将q打印出来,直至q重新称为一个空的Queue对象:
我们还是用一张图来帮助理解记忆:
一个Pipe对象只能有两个端点。因此,当进程只需要双向通信时,它会比Queue对象更好用。
multiprocessing模块提供了 Pipe() 函数,该函数返回由管道连接的一对连接对象。 Pipe() 返回的两个连接对象分别表示管道的两端。每个连接对象都有 send() 和 recv() 方法。
我们来看一个例子:
上面这个程序的输出结果是:
我们还是来看一下这个程序到底做了什么。首先创建了一个Pipe对象:
与上文说的一样,该对象返回了一对管道两端的两个连接对象。然后使用 send() 方法和 recv() 方法进行信息的传递。就这么简单。在上面的程序中,我们从一端向另一端发送一串消息。在另一端,我们收到消息,并在收到END消息时退出。
要注意的是,如果两个进程(或线程)同时尝试从管道的同一端读取或写入管道中的数据,则管道中的数据可能会损坏。不过不同的进程同时使用管道的两端是没有问题的。还要注意,Queue对象在进程之间进行了适当的同步,但代价是增加了计算复杂度。因此,Queue对象对于线程和进程是相对安全的。
最后我们还是用一张图来示意:
Python的multiprocessing模块还剩最后一篇文章:多进程的同步与池化
敬请期待啦!
共享变量的方法。
没有办法直接实现你的需求,但是,你可以用共享变量的方法实现,比如:
def worker(procnum, return_dict):
'''worker function'''
print str(procnum) + ' represent!'
return_dict[procnum] = procnumif __name__ == '__main__':
manager = Manager()
return_dict = manager.dict()
jobs = [] for i in range(5):
p = multiprocessing.Process(target=worker, args=(i,return_dict))
jobs.append(p)
p.start() for proc in jobs:
proc.join() print return_dict.values()
time.sleep() 函数命名来源于英文单词time(时间)和sleep(睡眠)。
time 是python带的非内置库,使用时需要import,主要用于处理和时间相关的操作。
time.sleep用于给定时间内挂起(等待)当前线程的执行。
time.sleep() 函数的例子:
可以注释掉time.sleep(2)再运行一次对比一下
可以看到虽然都是打印出一样的结果,但time.sleep()加入了等待时间
这里还要解释一下python中线程与进程的区别。
举个例子,厨房做菜看成是一个进程,那么这个进程下面就可能有多个人或一个人(cpu基本执行单元,即线程)来执行,多个人可以分别洗菜,刷碗,摆盘等等同时作业,他们又是共享这个厨房的资源的。每个人存在一定的资源竞争关系,比如炉火只有1个。
这里time.sleep是针对线程执行的,也就是其中一个人去sleep睡觉了,不影响其他人的继续工作。
参数
该函数没有返回值。
结果类似如下:
可以看到秒数相差了5
无
time.sleep()常用于推迟执行的场景
在python中,与时间相关的模块有:time,datetime以及calendar
对基础运行环境有疑问的,推荐参考: python函数深入浅出 0.基础篇
基于官方文档:
日乐购,刚才看到的一个博客,写的都不太对,还是基于官方的比较稳妥
我就是喜欢抄官方的,哈哈
通常我们使用Process实例化一个进程,并调用 他的 start() 方法启动它。
这种方法和 Thread 是一样的。
上图中,我写了 p.join() 所以主进程是 等待 子进程执行完后,才执行 print("运行结束")
否则就是反过来了(这个不一定,看你的语句了,顺序其实是随机的)例如:
主进加个 sleep
所以不加join() ,其实子进程和主进程是各干各的,谁也不等谁。都执行完后,文件运行就结束了
上面我们用了 os.getpid() 和 os.getppid() 获取 当前进程,和父进程的id
下面就讲一下,这两个函数的用法:
os.getpid()
返回当前进程的id
os.getppid()
返回父进程的id。 父进程退出后,unix 返回初始化进程(1)中的一个
windows返回相同的id (可能被其他进程使用了)
这也就解释了,为啥我上面 的程序运行多次, 第一次打印的parentid 都是 14212 了。
而子进程的父级 process id 是调用他的那个进程的 id : 1940
视频笔记:
多进程:使用大致方法:
参考: 进程通信(pipe和queue)
pool.map (函数可以有return 也可以共享内存或queue) 结果直接是个列表
poll.apply_async() (同map,只不过是一个进程,返回结果用 xx.get() 获得)
报错:
参考 :
把 pool = Pool() 放到 if name == " main ": 下面初始化搞定。
结果:
这个肯定有解释的
测试多进程计算效果:
进程池运行:
结果:
普通计算:
我们同样传入 1 2 10 三个参数测试:
其实对比下来开始快了一半的;
我们把循环里的数字去掉一个 0;
单进程:
多进程:
两次测试 单进程/进程池 分别为 0.669 和 0.772 几乎成正比的。
问题 二:
视图:
post 视图里面
Music 类:
直接报错:
写在 类里面也 在函数里用 self.pool 调用也不行,也是相同的错误。
最后 把 pool = Pool 直接写在 search 函数里面,奇迹出现了:
前台也能显示搜索的音乐结果了
总结一点,进程这个东西,最好 写在 直接运行的函数里面,而不是 一个函数跳来跳去。因为最后可能 是在子进程的子进程运行的,这是不许的,会报错。
还有一点,多进程运行的函数对象,不能是 lambda 函数。也许lambda 虚拟,在内存??
使用 pool.map 子进程 函数报错,导致整个 pool 挂了:
参考:
主要你要,对函数内部捕获错误,而不能让异常抛出就可以了。
关于map 传多个函数参数
我一开始,就是正常思维,多个参数,搞个元祖,让参数一一对应不就行了:
报错:
参考:
普通的 process 当让可以穿多个参数,map 却不知道咋传的。
apply_async 和map 一样,不知道咋传的。
最简单的方法:
使用 starmap 而不是 map
结果:
子进程结束
1.8399453163146973
成功拿到结果了
关于map 和 starmap 不同的地方看源码:
关于apply_async() ,我没找到多参数的方法,大不了用 一个迭代的 starmap 实现。哈哈
关于 上面源码里面有 itertools.starmap
itertools 用法参考:
有个问题,多进程最好不要使用全部的 cpu , 因为这样可能影响其他任务,所以 在进程池 添加 process 参数 指定,cpu 个数:
上面就是预留了 一个cpu 干其他事的
后面直接使用 Queue 遇到这个问题:
解决:
Manager().Queue() 代替 Queue()
因为 queue.get() 是堵塞型的,所以可以提前判断是不是 空的,以免堵塞进程。比如下面这样:
使用 queue.empty() 空为True