大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
本篇内容介绍了“C++怎么实现二分法”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
公司主营业务:成都网站制作、成都网站建设、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。成都创新互联公司是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。成都创新互联公司推出碾子山免费做网站回馈大家。
二分法是在一个排好序的序列(数组,链表等)中,不断收缩区间来进行目标值查找的一种算法,下面我们就来探究二分法使用的一些细节,以及常用的场景:
寻找一个数;寻找左侧边界;寻找右侧边界。
int binarySearch(vector& nums, int target){ int left=0, right=nums.size(); while(left < right) { int mid=(left+right)/2; if(nums[mid] == target){ // 条件一:中间的值与目标值相同 } else if(nums[mid] > target){ // 条件二:中间的值大于目标值 } else if(nums[mid] < target){ // 条件三:中间的值小于目标值 } } return -1; }
首先,我们先来分析一下右边界 right
的初始值:
当 right=nums.size()
时,初始化的区间就变成了 ([0, right-1]),即 ([0,right));
当right=nums.size()-1
时,初始化的区间就变成了 ([0, right])。
在第一种情况下,当 nums[mid] > target
时,需要将区间向左收缩,即 right=mid
。这个做法的逻辑是:既然 mid
位置处大于 target
,而查找区间又是 “左闭右开”,因此当 right=mid
时,新的查找区间变成了 ([0, mid)),这样才不会漏掉值。同理,当 nums[mid] < target
时,需要将区间向右收缩,即 left = mid+1
,因为在 "左闭右开" 的区间下,新的查找区间变成 ([mid+1, right)) 才不会漏掉值。当目标值不在序列中时,需要将 while
的条件写成 while(left < right)
而不是写成 while(left<=right)
,这样会引起数组越界。
第二种情况的分析类似,这里只给出结论:
当 nums[mid] > target
时,需要将区间向左收缩,即 right=mid-1
;
当 nums[mid] < target
时,需要将区间向右收缩,即 left = mid+1
;
当目标值不在序列中时,需要将 while
的条件写成 while(left<=right)
在序列中查找一个数,如果存在则返回数的索引,如果不存在则返回 -1
。为了方便分析,我们就只用第一种情况进行说明:
int binarySearch(vector& nums, int target){ int left=0, right=nums.size(); while(left < right) { int mid=(left+right)/2; if(nums[mid] == target){ return mid; // 查询到目标值,直接返回目标值的位置 } else if(nums[mid] > target){ right = mid; // 中间的值大于目标值,向左收缩区间 } else if(nums[mid] < target){ left = mid+1;// 中间的值小于目标值,向右收缩区间 } } return -1; // 当没有找到,直接返回-1 }
上述代码只能从序列中查找一个目标值并返回位置,当一个序列中目标值不止一个时,我们需要找到目标值最左边的位置和最右边的位置,这时候二分法需要进行改写:
// 查找目标值的左边界 int binarySearch(vector& nums, int target){ int left=0, right=nums.size(); while(left < right) { int mid=(left+right)/2; if(nums[mid] == target){ right = mid; // 查询到目标值不进行返回,而是收缩区间继续查找 } else if(nums[mid] > target){ right = mid; // 中间的值大于目标值,向左收缩区间 } else if(nums[mid] < target){ left = mid+1;// 中间的值小于目标值,向右收缩区间 } } return left; }
根据上述代码,可以发现如果查找目标值的左边界,在满足 nums[mid] == target
时,需要缩小搜索区间的上界 right
,在区间 ([left, mid]) 中继续搜索,直到搜索完毕 left==right
。此时 left=right=左边界
。
查找右边界的做法与左边界类似:
// 查找目标值的左边界 int binarySearch(vector& nums, int target){ int left=0, right=nums.size(); while(left < right) { int mid=(left+right)/2; if(nums[mid] == target){ left = mid+1; // 查询到目标值不进行返回,而是收缩区间继续查找 } else if(nums[mid] > target){ right = mid; // 中间的值大于目标值,向左收缩区间 } else if(nums[mid] < target){ left = mid+1;// 中间的值小于目标值,向右收缩区间 } } return left-1; }
注意这里的判断条件改成了当 nums[mid] == target
时,left = mid+1
。因为搜索的区间为 "左闭右开",所以在寻找左边界时可令 right=mid
,在寻找右边界时必须另 left=mid+1
,不然程序会一直停在循环里面而无法跳出循环。
“C++怎么实现二分法”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!