大橙子网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

docker容器资源配额怎么控制

本篇内容主要讲解“docker容器资源配额怎么控制”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“docker容器资源配额怎么控制”吧!

创新互联长期为上千多家客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为阳西企业提供专业的网站设计制作、成都网站制作,阳西网站改版等技术服务。拥有十载丰富建站经验和众多成功案例,为您定制开发。

docker通过cgroup来控制容器使用的资源配额,包括cpu、内存、磁盘三大方面,基本覆盖了常见的资源配额和使用量控制。

cgroup简介

cgroup是control groups的缩写,是linux 内核提供的一种可以限制、记录、隔离进程组所使用的物理资源(如 cpu、memory、磁盘io等等) 的机制,被lxc、docker等很多项目用于实现进程资源控制。cgroup将任意进程进行分组化管理的 linux 内核功能。cgroup本身是提供将进程进行分组化管理的功能和接口的基础结构,i/o 或内存的分配控制等具体的资源管理功能是通过这个功能来实现的。这些具体的资源管理功能称为cgroup子系统,有以下几大子系统实现:

  1. blkio:设置限制每个块设备的输入输出控制。例如:磁盘,光盘以及usb等等。

  2. cpu:使用调度程序为cgroup任务提供cpu的访问。

  3. cpuacct:产生cgroup任务的cpu资源报告。

  4. cpuset:如果是多核心的cpu,这个子系统会为cgroup任务分配单独的cpu和内存。

  5. devices:允许或拒绝cgroup任务对设备的访问。

  6. freezer:暂停和恢复cgroup任务。

  7. memory:设置每个cgroup的内存限制以及产生内存资源报告。

  8. net_cls:标记每个网络包以供cgroup方便使用。

  9. ns:命名空间子系统。

  10. perf_event:增加了对每group的监测跟踪的能力,即可以监测属于某个特定的group的所有线程以及运行在特定cpu上的线程。

目前docker只是用了其中一部分子系统,实现对资源配额和使用的控制。

可以使用stress工具来测试cpu和内存。使用下面的dockerfile来创建一个基于ubuntu的stress工具镜像。

from ubuntu:14.04
run apt-get update &&apt-get install stress

cpu资源配额控制

cpu份额控制

docker提供了–cpu-shares参数,在创建容器时指定容器所使用的cpu份额值。使用示例:

使用命令docker run -tid –cpu-shares 100 ubuntu:stress,创建容器,则最终生成的cgroup的cpu份额配置可以下面的文件中找到:

root@ubuntu:~# cat /sys/fs/cgroup/cpu/docker/<容器的完整长id>/cpu.shares
100

cpu-shares的值不能保证可以获得1个vcpu或者多少ghz的cpu资源,仅仅只是一个弹性的加权值。

默认情况下,每个docker容器的cpu份额都是1024。单独一个容器的份额是没有意义的,只有在同时运行多个容器时,容器的cpu加权的效果才能体现出来。例如,两个容器a、b的cpu份额分别为1000和500,在cpu进行时间片分配的时候,容器a比容器b多一倍的机会获得cpu的时间片,但分配的结果取决于当时主机和其他容器的运行状态,实际上也无法保证容器a一定能获得cpu时间片。比如容器a的进程一直是空闲的,那么容器b是可以获取比容器a更多的cpu时间片的。极端情况下,比如说主机上只运行了一个容器,即使它的cpu份额只有50,它也可以独占整个主机的cpu资源。

cgroups只在容器分配的资源紧缺时,也就是说在需要对容器使用的资源进行限制时,才会生效。因此,无法单纯根据某个容器的cpu份额来确定有多少cpu资源分配给它,资源分配结果取决于同时运行的其他容器的cpu分配和容器中进程运行情况。

cpu周期控制

docker提供了–cpu-period、–cpu-quota两个参数控制容器可以分配到的cpu时钟周期。–cpu-period是用来指定容器对cpu的使用要在多长时间内做一次重新分配,而–cpu-quota是用来指定在这个周期内,最多可以有多少时间用来跑这个容器。跟–cpu-shares不同的是这种配置是指定一个绝对值,而且没有弹性在里面,容器对cpu资源的使用绝对不会超过配置的值。
cpu-period和cpu-quota的单位为微秒(μs)。cpu-period的最小值为1000微秒,最大值为1秒(10^6 μs),默认值为0.1秒(100000 μs)。cpu-quota的值默认为-1,表示不做控制。

举个例子,如果容器进程需要每1秒使用单个cpu的0.2秒时间,可以将cpu-period设置为1000000(即1秒),cpu-quota设置为200000(0.2秒)。当然,在多核情况下,如果允许容器进程需要完全占用两个cpu,则可以将cpu-period设置为100000(即0.1秒),cpu-quota设置为200000(0.2秒)。

使用示例:

使用命令docker run -tid –cpu-period 100000 –cpu-quota 200000 ubuntu,创建容器,则最终生成的cgroup的cpu周期配置可以下面的文件中找到:

root@ubuntu:~# cat /sys/fs/cgroup/cpu/docker/<容器的完整长id>/cpu.cfs_period_us
100000
root@ubuntu:~# cat /sys/fs/cgroup/cpu/docker/<容器的完整长id>/cpu.cfs_quota_us
200000

关于cpu-shares、cpu-period、cpu-quota这些配置的详细介绍,大家可以深入阅读redhat文档中关于cpu的这一章。

cpu core控制

对多核cpu的服务器,docker还可以控制容器运行限定使用哪些cpu内核和内存节点,即使用–cpuset-cpus和–cpuset-mems参数。对具有numa拓扑(具有多cpu、多内存节点)的服务器尤其有用,可以对需要高性能计算的容器进行性能最优的配置。如果服务器只有一个内存节点,则–cpuset-mems的配置基本上不会有明显效果。

使用示例:

命令docker run -tid –name cpu1 –cpuset-cpus 0-2 ubuntu,表示创建的容器只能用0、1、2这三个内核。最终生成的cgroup的cpu内核配置如下:

root@ubuntu:~# cat /sys/fs/cgroup/cpuset/docker/<容器的完整长id>/cpuset.cpus
0-2

通过docker exec <容器id> taskset -c -p 1(容器内部第一个进程编号一般为1),可以看到容器中进程与cpu内核的绑定关系,可以认为达到了绑定cpu内核的目的。

docker容器资源配额怎么控制

cpu配额控制参数的混合使用

当上面这些参数中时,cpu-shares控制只发生在容器竞争同一个内核的时间片时,如果通过cpuset-cpus指定容器a使用内核0,容器b只是用内核1,在主机上只有这两个容器使用对应内核的情况,它们各自占用全部的内核资源,cpu-shares没有明显效果。

cpu-period、cpu-quota这两个参数一般联合使用,在单核情况或者通过cpuset-cpus强制容器使用一个cpu内核的情况下,即使cpu-quota超过cpu-period,也不会使容器使用更多的cpu资源。

cpuset-cpus、cpuset-mems只在多核、多内存节点上的服务器上有效,并且必须与实际的物理配置匹配,否则也无法达到资源控制的目的。

在系统具有多个cpu内核的情况下,需要通过cpuset-cpus为容器cpu内核才能比较方便地进行测试。

试用下列命令创建测试用的容器:

docker run -tid –name cpu2 –cpuset-cpus 3 –cpu-shares 512 ubuntu:stress stress -c 10
docker run -tid –name cpu3 –cpuset-cpus 3 –cpu-shares 1024 ubuntu:stress stress -c 10

上面的ubuntu:stress镜像安装了stress工具来测试cpu和内存的负载。两个容器的命令stress -c 10&,这个命令将会给系统一个随机负载,产生10个进程,每个进程都反复不停的计算由rand()产生随机数的平方根,直到资源耗尽。

观察到宿主机上的cpu试用率如下图所示,第三个内核的使用率接近100%,并且一批进程的cpu使用率明显存在2:1的使用比例的对比:

docker容器资源配额怎么控制

容器cpu2的cpu使用如下所示:

docker容器资源配额怎么控制

容器cpu3的cpu使用如下图示:

docker容器资源配额怎么控制

分别进入容器后,使用top命令可以明显地看出容器之间的资源使用对比,并且也达到了绑定cpu内核的目的。
注意:如果使用nsenter之类的工具进入容器,再使用stress -c 10进行测试,就可以发现cpuset-cpus的限制是可以被突破的,从而使stress测试进程使用宿主机的所有cpu内核。这是因为nsenter使用挂载的方式直接进入了容器的命名空间,突破了命名空间中的cgroup控制。

内存配额控制

和cpu控制一样,docker也提供了若干参数来控制容器的内存使用配额,可以控制容器的swap大小、可用内存大小等各种内存方面的控制。主要有以下参数:

  1. memory-swappiness:控制进程将物理内存交换到swap分区的倾向,默认系数为60。系数越小,就越倾向于使用物理内存。值范围为0-100。当值为100时,表示尽量使用swap分区;当值为0时,表示禁用容器 swap 功能(这点不同于宿主机,宿主机 swappiness 设置为 0 也不保证 swap 不会被使用)。

  2. –kernel-memory:内核内存,不会被交换到swap上。一般情况下,不建议修改,可以直接参考docker的官方文档。

  3. –memory:设置容器使用的最大内存上限。默认单位为byte,可以使用k、g、m等带单位的字符串。

  4. –memory-reservation:启用弹性的内存共享,当宿主机资源充足时,允许容器尽量多地使用内存,当检测到内存竞争或者低内存时,强制将容器的内存降低到memory-reservation所指定的内存大小。按照官方说法,不设置此选项时,有可能出现某些容器长时间占用大量内存,导致性能上的损失。

  5. –memory-swap:等于内存和swap分区大小的总和,设置为-1时,表示swap分区的大小是无限的。默认单位为byte,可以使用k、g、m等带单位的字符串。如果–memory-swap的设置值小于–memory的值,则使用默认值,为–memory-swap值的两倍。

默认情况下,容器可以使用主机上的所有空闲内存。

与cpu的cgroups配置类似,docker会自动为容器在目录/sys/fs/cgroup/memory/docker/<容器的完整长id>中创建相应cgroup配置文件,例如下面的文件:

docker容器资源配额怎么控制

这些文件与docker的相关配置是一一对应的,可以参考redhat的文档resource_management_guide的内存部分来查看它们的作用。

内存配额控制使用示例

设置容器的内存上限,参考命令如下所示:

docker run -tid —name mem1 —memory 128m ubuntu:stress /bin/bash

默认情况下,除了–memory指定的内存大小以外,docker还为容器分配了同样大小的swap分区,也就是说,上面的命令创建出的容器实际上最多可以使用256mb内存,而不是128mb内存。如果需要自定义swap分区大小,则可以通过联合使用–memory–swap参数来实现控制。

对上面的命令创建的容器,可以查看到在cgroups的配置文件中,查看到容器的内存大小为128mb (128×1024×1024=134217728b),内存和swap加起来大小为256mb (256×1024×1024=268435456b)。

cat /sys/fs/cgroup/memory/docker/<容器的完整id>/memory.limit_in_bytes
134217728
cat /sys/fs/cgroup/memory/docker/<容器的完整id>/memory.memsw.limit_in_bytes
268435456

注意:执行上述命令时,命令行可能会输出下面的警告:

warning: your kernel does not support swap limit capabilities, memory limited without swap.

这是因为主机上默认不启用cgroup来控制swap分区,可以参考docker官方的相应文档,修改grub启动参数。

在容器中,依次使用下面的stress命令,即可对容器的内存进行压力测试,确认内存。

stress –vm 1 –vm-bytes 256m –vm-hang 0 &
stress –vm 1 –vm-bytes 250m –vm-hang 0 &

docker容器资源配额怎么控制

可以发现,使用256mb进行压力测试时,由于超过了内存上限(128mb内存+128mb swap),进程被oom杀死。使用250mb进行压力测试时,进程可以正常运行,并且通过docker stats可以查看到容器的内存已经满负载了。

docker容器资源配额怎么控制

磁盘io配额控制

相对于cpu和内存的配额控制,docker对磁盘io的控制相对不成熟,大多数都必须在有宿主机设备的情况下使用。主要包括以下参数:

  1. –device-read-bps:限制此设备上的读速度(bytes per second),单位可以是kb、mb或者gb。

  2. –device-read-iops:通过每秒读io次数来限制指定设备的读速度。

  3. –device-write-bps :限制此设备上的写速度(bytes per second),单位可以是kb、mb或者gb。

  4. –device-write-iops:通过每秒写io次数来限制指定设备的写速度。

  5. –blkio-weight:容器默认磁盘io的加权值,有效值范围为10-100。

  6. –blkio-weight-device: 针对特定设备的io加权控制。其格式为device_name:weight

磁盘io配额控制示例

blkio-weight

要使–blkio-weight生效,需要保证io的调度算法为cfq。可以使用下面的方式查看:

root@ubuntu:~# cat /sys/block/sda/queue/scheduler
noop [deadline] cfq

使用下面的命令创建两个–blkio-weight值不同的容器:

docker run -ti –rm –blkio-weight 100 ubuntu:stress
docker run -ti –rm –blkio-weight 1000 ubuntu:stress

在容器中同时执行下面的dd命令,进行测试:

time dd if=/dev/zero of=test.out bs=1m count=1024 oflag=direct

最终输出如下图所示:

docker容器资源配额怎么控制

在我的测试环境上没有达到理想的测试效果,通过docker官方的blkio-weight doesn't take effect in docker docker version 1.8.1 #16173,可以发现这个问题在一些环境上存在,但docker官方也没有给出解决办法。

device-write-bps

使用下面的命令创建容器,并执行命令验证写速度的限制。

docker run -tid –name disk1 –device-write-bps /dev/sda:1mb ubuntu:stress

通过dd来验证写速度,输出如下图示:

docker容器资源配额怎么控制

可以看到容器的写磁盘速度被成功地限制到了1mb/s。device-read-bps等其他磁盘io限制参数可以使用类似的方式进行验证。

容器空间大小限制

在docker使用devicemapper作为存储驱动时,默认每个容器和镜像的最大大小为10g。如果需要调整,可以在daemon启动参数中,使用dm.basesize来指定,但需要注意的是,修改这个值,不仅仅需要重启docker daemon服务,还会导致宿主机上的所有本地镜像和容器都被清理掉。

使用aufs或者overlay等其他存储驱动时,没有这个限制。

~~~以上所有截图测试环境,宿主机为ubuntu 14.04.4,docker版本为1.10.3~~~

到此,相信大家对“docker容器资源配额怎么控制”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!


新闻标题:docker容器资源配额怎么控制
分享网址:http://dzwzjz.com/article/ggcdjc.html
在线咨询
服务热线
服务热线:028-86922220
TOP