大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章将为大家详细讲解有关java如何实现dijkstra最短路径寻路算法,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
做网站、网站建设,成都做网站公司-创新互联公司已向成百上千企业提供了,网站设计,网站制作,网络营销等服务!设计与技术结合,多年网站推广经验,合理的价格为您打造企业品质网站。
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。
它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。
基本思想
通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。
此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。
初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是"起点s到该顶点的路径"。然后,从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 然后,再从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 ... 重复该操作,直到遍历完所有顶点。
操作步骤
(1) 初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为"起点s到该顶点的距离"[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。
(2) 从U中选出"距离最短的顶点k",并将顶点k加入到S中;同时,从U中移除顶点k。
(3) 更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。
(4) 重复步骤(2)和(3),直到遍历完所有顶点。
得益于csdn另外一篇博客的算法,我对此做了一些改进。
构建地图:
import java.util.HashMap; import java.util.Iterator; import java.util.Map; import java.util.Map.Entry; /** * 地图 * @author jake * @date 2014-7-26-下午10:40:10 * @param节点主键 */ public class Maps { /** * 所有的节点集合 * 节点Id - 节点 */ private Map > nodes = new HashMap >(); /** * 地图构建器 * * @author jake * @date 2014-7-26-下午9:47:44 */ public static class MapBuilder { /** * map实例 */ private Maps map = new Maps (); /** * 构造MapBuilder * * @return MapBuilder */ public MapBuilder create() { return new MapBuilder (); } /** * 添加节点 * * @param node 节点 * @return */ public MapBuilder addNode(Node node) { map.nodes.put(node.getId(), node); return this; } /** * 添加路线 * * @param node1Id 节点Id * @param node2Id 节点Id * @param weight 权重 * @return */ public MapBuilder addPath(T node1Id, T node2Id, int weight) { Node node1 = map.nodes.get(node1Id); if (node1 == null) { throw new RuntimeException("无法找到节点:" + node1Id); } Node node2 = map.nodes.get(node2Id); if (node2 == null) { throw new RuntimeException("无法找到节点:" + node2Id); } node1.getChilds().put(node2, weight); node2.getChilds().put(node1, weight); return this; } /** * 构建map * @return map */ public Maps build() { return this.map; } } /** * 节点 * * @author jake * @date 2014-7-26-下午9:51:31 * @param 节点主键类型 */ public static class Node { /** * 节点主键 */ private T id; /** * 节点联通路径 * 相连节点 - 权重 */ private Map , Integer> childs = new HashMap , Integer>(); /** * 构造方法 * @param id 节点主键 */ public Node(T id) { this.id = id; } /** * 获取实例 * @param id 主键 * @return */ public static Node valueOf(T id) { return new Node (id); } /** * 是否有效 * 用于动态变化节点的可用性 * @return */ public boolean validate() { return true; } public T getId() { return id; } public void setId(T id) { this.id = id; } public Map , Integer> getChilds() { return childs; } protected void setChilds(Map , Integer> childs) { this.childs = childs; } @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append(this.id).append("["); for (Iterator , Integer>> it = childs.entrySet().iterator(); it.hasNext();) { Entry , Integer> next = it.next(); sb.append(next.getKey().getId()).append("=").append(next.getValue()); if (it.hasNext()) { sb.append(","); } } sb.append("]"); return sb.toString(); } } /** * 获取地图的无向图节点 * @return 节点Id - 节点 */ public Map > getNodes() { return nodes; } }
开始寻路:
import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.HashSet; import java.util.Iterator; import java.util.List; import java.util.Map; import java.util.Map.Entry; import java.util.Set; import com.my9yu.sanguohun2.utils.dijkstra.Maps.MapBuilder; /** * 迪杰斯特拉(Dijkstra)图最短路径搜索算法 *
每次开始新的搜索需要创建此类对象 * @param节点的主键类型 * @author jake * @date 2014-7-26-下午9:45:07 */ public class MapSearcher { /** * 最短路径搜索结果类 * @author jake * @date 2014-7-27-下午3:55:11 * @param 节点的主键类型 */ public static class SearchResult { /** * 最短路径结果 */ List path; /** * 最短距离 */ Integer distance; /** * 获取实例 * @param path 最短路径结果 * @param distance 最短路径距离 * @return */ protected static SearchResult valueOf(List path, Integer distance) { SearchResult r = new SearchResult (); r.path = path; r.distance = distance; return r; } public List getPath() { return path; } public Integer getDistance() { return distance; } @Override public String toString() { StringBuffer sb = new StringBuffer(); sb.append("path:"); for(Iterator it = this.path.iterator(); it.hasNext();) { sb.append(it.next()); if(it.hasNext()) { sb.append("->"); } } sb.append("\n").append("distance:").append(distance); return sb.toString(); } } /** * 地图对象 */ Maps map; /** * 开始节点 */ Maps.Node startNode; /** * 结束节点 */ Maps.Node targetNode; /** * 开放的节点 */ Set > open = new HashSet >(); /** * 关闭的节点 */ Set > close = new HashSet >(); /** * 最短路径距离 */ Map , Integer> path = new HashMap , Integer>(); /** * 最短路径 */ Map > pathInfo = new HashMap >(); /** * 初始化起始点 *
初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为"起点s到该顶点的距离" * [例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。 * @param source 起始节点的Id * @param map 全局地图 * @param closeSet 已经关闭的节点列表 * @return */ @SuppressWarnings("unchecked") public Maps.Nodeinit(T source, Maps map, Set closeSet) { Map > nodeMap = map.getNodes(); Maps.Node startNode = nodeMap.get(source); //将初始节点放到close close.add(startNode); //将其他节点放到open for(Maps.Node node : nodeMap.values()) { if(!closeSet.contains(node.getId()) && !node.getId().equals(source)) { this.open.add(node); } } // 初始路径 T startNodeId = startNode.getId(); for(Entry , Integer> entry : startNode.getChilds().entrySet()) { Maps.Node node = entry.getKey(); if(open.contains(node)) { T nodeId = node.getId(); path.put(node, entry.getValue()); pathInfo.put(nodeId, new ArrayList (Arrays.asList(startNodeId, nodeId))); } } for(Maps.Node node : nodeMap.values()) { if(open.contains(node) && !path.containsKey(node)) { path.put(node, Integer.MAX_VALUE); pathInfo.put(node.getId(), new ArrayList (Arrays.asList(startNodeId))); } } this.startNode = startNode; this.map = map; return startNode; } /** * 递归Dijkstra * @param start 已经选取的最近节点 */ protected void computePath(Maps.Node start) { // 从U中选出"距离最短的顶点k",并将顶点k加入到S中;同时,从U中移除顶点k。 Maps.Node nearest = getShortestPath(start); if (nearest == null) { return; } //更新U中各个顶点到起点s的距离。 //之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离; //例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。 close.add(nearest); open.remove(nearest); //已经找到结果 if(nearest == this.targetNode) { return; } Map , Integer> childs = nearest.getChilds(); for (Maps.Node child : childs.keySet()) { if (open.contains(child)) {// 如果子节点在open中 Integer newCompute = path.get(nearest) + childs.get(child); if (path.get(child) > newCompute) {// 之前设置的距离大于新计算出来的距离 path.put(child, newCompute); List path = new ArrayList (pathInfo.get(nearest.getId())); path.add(child.getId()); pathInfo.put(child.getId(), path); } } } // computePath(start);// 重复执行自己,确保所有子节点被遍历 computePath(nearest);// 向外一层层递归,直至所有顶点被遍历 } /** * 获取与node最近的子节点 */ private Maps.Node getShortestPath(Maps.Node node) { Maps.Node res = null; int minDis = Integer.MAX_VALUE; for (Maps.Node entry : path.keySet()) { if (open.contains(entry)) { int distance = path.get(entry); if (distance < minDis) { minDis = distance; res = entry; } } } return res; } /** * 获取到目标点的最短路径 * * @param target * 目标点 * @return */ public SearchResult getResult(T target) { Maps.Node targetNode = this.map.getNodes().get(target); if(targetNode == null) { throw new RuntimeException("目标节点不存在!"); } this.targetNode = targetNode; //开始计算 this.computePath(startNode); return SearchResult.valueOf(pathInfo.get(target), path.get(targetNode)); } /** * 打印出所有点的最短路径 */ public void printPathInfo() { Set >> pathInfos = pathInfo.entrySet(); for (Map.Entry > pathInfo : pathInfos) { System.out.println(pathInfo.getKey() + ":" + pathInfo.getValue()); } } /** * 测试方法 */ @org.junit.Test public void test() { MapBuilder mapBuilder = new Maps.MapBuilder ().create(); //构建节点 mapBuilder.addNode(Maps.Node.valueOf("A")); mapBuilder.addNode(Maps.Node.valueOf("B")); mapBuilder.addNode(Maps.Node.valueOf("C")); mapBuilder.addNode(Maps.Node.valueOf("D")); mapBuilder.addNode(Maps.Node.valueOf("E")); mapBuilder.addNode(Maps.Node.valueOf("F")); mapBuilder.addNode(Maps.Node.valueOf("G")); mapBuilder.addNode(Maps.Node.valueOf("H")); mapBuilder.addNode(Maps.Node.valueOf("I")); //构建路径 mapBuilder.addPath("A", "B", 1); mapBuilder.addPath("A", "F", 2); mapBuilder.addPath("A", "D", 4); mapBuilder.addPath("A", "C", 1); mapBuilder.addPath("A", "G", 5); mapBuilder.addPath("C", "G", 3); mapBuilder.addPath("G", "H", 1); mapBuilder.addPath("H", "B", 4); mapBuilder.addPath("B", "F", 2); mapBuilder.addPath("E", "F", 1); mapBuilder.addPath("D", "E", 1); mapBuilder.addPath("H", "I", 1); mapBuilder.addPath("C", "I", 1); //构建全局Map Maps map = mapBuilder.build(); //创建路径搜索器(每次搜索都需要创建新的MapSearcher) MapSearcher searcher = new MapSearcher (); //创建关闭节点集合 Set closeNodeIdsSet = new HashSet (); closeNodeIdsSet.add("C"); //设置初始节点 searcher.init("A", map, closeNodeIdsSet); //获取结果 SearchResult result = searcher.getResult("G"); System.out.println(result); //test.printPathInfo(); } }
根据算法的原理可知,getShortestPath是获取open集合里面目前更新的距离离起始点最短路径的节点。基于广度优先原则,可以避免路径权重不均导致错寻的情况。
关于“java如何实现dijkstra最短路径寻路算法”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。