大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章主要介绍了Python中Tf-idf怎么用,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
目前成都创新互联已为近千家的企业提供了网站建设、域名、网页空间、网站托管维护、企业网站设计、东胜网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。
说明
1、TF-IDF是如果词或词组出现在文章中的概率较高,而在其他文章中很少出现,那么它就被认为具有很好的类别区分能力,适合进行分类。
2、提取文本特征,用来评估字词对文件集或某个语料库中文件的重要性。
实例
def tfidf_demo(): """ 用tfidf的方法进行文本特征提取 :return: """ # 1.将中文文本进行分词 data = ["一种还是一种今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。", "我们看到的从很远星系来的光是在几百万年之前发出的,这样当我们看到宇宙时,我们是在看它的过去。", "如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"] data_new = [] for sent in data: data_new.append(cut_word(sent)) # print(data_new) # 2.实例化一个转换器类 transfer = TfidfVectorizer(stop_words=["一种", '因为']) # 3.调用fit_transform data_final = transfer.fit_transform(data_new) print("data_new:\n", data_final.toarray()) print("特征名字:\n", transfer.get_feature_names()) return None
感谢你能够认真阅读完这篇文章,希望小编分享的“Python中Tf-idf怎么用”这篇文章对大家有帮助,同时也希望大家多多支持创新互联,关注创新互联行业资讯频道,更多相关知识等着你来学习!