大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
小编给大家分享一下Python中JSON秒变Dataframe的示例,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
专注于为中小企业提供成都网站设计、做网站服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业呼图壁免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了1000多家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。
调用API
和文档数据库会返回嵌套的JSON
对象,当我们使用Python
尝试将嵌套结构中的键转换为列时,数据加载到pandas
中往往会得到如下结果:
df = pd.DataFrame.from_records(results [“ issues”],columns = [“ key”,“ fields”])
说明:这里results是一个大的字典,issues是results其中的一个键,issues的值为一个嵌套JSON对象字典的列表,后面会看到JSON嵌套结构。
问题在于API返回了嵌套的JSON
结构,而我们关心的键在对象中确处于不同级别。
嵌套的JSON
结构张成这样的。
而我们想要的是下面这样的。
下面以一个API返回的数据为例,API通常包含有关字段的元数据。假设下面这些是我们想要的字段。
key:JSON密钥,在第一级的位置。
summary:第二级的“字段”对象。
status name:第三级位置。
statusCategory name:位于第4个嵌套级别。
如上,我们选择要提取的字段在issues列表内的JSON
结构中分别处于4个不同的嵌套级别,一环扣一环。
{ "expand": "schema,names", "issues": [ { "fields": { "issuetype": { "avatarId": 10300, "description": "", "id": "10005", "name": "New Feature", "subtask": False }, "status": { "description": "A resolution has been taken, and it is awaiting verification by reporter. From here issues are either reopened, or are closed.", "id": "5", "name": "Resolved", "statusCategory": { "colorName": "green", "id": 3, "key": "done", "name": "Done", } }, "summary": "Recovered data collection Defraglar $MFT problem" }, "id": "11861", "key": "CAE-160", }, { "fields": { ... more issues], "maxResults": 5, "startAt": 0, "total": 160 }
一个不太好的解决方案
一种选择是直接撸码,写一个查找特定字段的函数,但问题是必须对每个嵌套字段调用此函数,然后再调用.apply
到DataFrame
中的新列。
为获取我们想要的几个字段,首先我们提取fields键内的对象至列:
df = ( df["fields"] .apply(pd.Series) .merge(df, left_index=True, right_index = True) )
从上表看出,只有summary是可用的,issuetype、status等仍然埋在嵌套对象中。
下面是提取issuetype中的name的一种方法。
# 提取issue type的name到一个新列叫"issue_type" df_issue_type = ( df["issuetype"] .apply(pd.Series) .rename(columns={"name": "issue_type_name"})["issue_type_name"] ) df = df.assign(issue_type_name = df_issue_type)
像上面这样,如果嵌套层级特别多,就需要自己手撸一个递归来实现了,因为每层嵌套都需要调用一个像上面解析并添加到新列的方法。
对于编程基础薄弱的朋友,手撸一个其实还挺麻烦的,尤其是对于数据分析师,着急想用数据的时候,希望可以快速拿到结构化的数据进行分析。
下面东哥分享一个pandas
的内置解决方案。
内置的解决方案
pandas
中有一个牛逼的内置功能叫 .json_normalize
。
pandas
的文档中提到:将半结构化JSON
数据规范化为平面表。
前面方案的所有代码,用这个内置功能仅需要3行就可搞定。步骤很简单,懂了下面几个用法即可。
确定我们要想的字段,使用 . 符号连接嵌套对象。
将想要处理的嵌套列表(这里是results["issues"]
)作为参数放进 .json_normalize
中。
过滤我们定义的FIELDS列表。
FIELDS = ["key", "fields.summary", "fields.issuetype.name", "fields.status.name", "fields.status.statusCategory.name"] df = pd.json_normalize(results["issues"]) df[FIELDS]
没错,就这么简单。
其它操作
记录路径
除了像上面那样传递results["issues"]
列表之外,我们还使用record_path
参数在JSON
对象中指定列表的路径。
# 使用路径而不是直接用results["issues"] pd.json_normalize(results, record_path="issues")[FIELDS]
自定义分隔符
还可以使用sep参数自定义嵌套结构连接的分隔符,比如下面将默认的“.”替换“-”。
### 用 "-" 替换默认的 "." FIELDS = ["key", "fields-summary", "fields-issuetype-name", "fields-status-name", "fields-status-statusCategory-name"] pd.json_normalize(results["issues"], sep = "-")[FIELDS]
控制递归
如果不想递归到每个子对象,可以使用max_level
参数控制深度。在这种情况下,由于statusCategory.name
字段位于JSON
对象的第4级,因此不会包含在结果DataFrame
中。
# 只深入到嵌套第二级 pd.json_normalize(results, record_path="issues", max_level = 2)
以上是“Python中JSON秒变Dataframe的示例”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!