大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
二叉查找树(Binary Search Tree),也称有序二叉树(ordered binary tree),排序二叉树(sorted binary tree),是指一棵空树或者具有下列性质的二叉树:
创新互联公司服务项目包括玉屏网站建设、玉屏网站制作、玉屏网页制作以及玉屏网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,玉屏网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到玉屏省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!
1、每一个节点都有一个作为搜索依据的关键码,所有节点的关键码互不相同。
2、左子树上所有节点的关键码都小于跟节点的关键码。
3、右子树上所有节点的关键码都大于跟节点的关键码。
4、左右子树都是二叉树搜索树。
#includeusing namespace std; template struct TreeNode { T Data; TreeNode *left; TreeNode *right; TreeNode *parent; TreeNode(T data) :left(NULL) ,right(NULL) ,Data(data) ,parent(NULL) {} }; template class BStree { public: BStree() {} ~BStree() {} BStree(T *arr,size_t sz); void Insert(T data) { TreeNode *tmp = new TreeNode (data); InsertBStree(_root,tmp); } void Search(T data) { TreeNode *tmp = new TreeNode (data); tmp = SearchBStree(_root,tmp); if(tmp) cout<<'Y'< * node = MinBStree(_root); cout< Data< * node = MaxBStree(_root); cout< Data< * node = MaxLeftBStree(_root); cout< Data< * node = MinRightBStree(_root); cout< Data< *tmp = new TreeNode (data); tmp = SearchBStree(_root,tmp); if (tmp) tmp = prevBStree(tmp); cout< Data< *tmp = new TreeNode (data); tmp = SearchBStree(_root,tmp); if (tmp) tmp = postBStree(tmp); cout< Data< *tmp = new TreeNode (data); tmp = SearchBStree(_root,tmp); if (tmp) DeleteBStree(tmp); } void Destroy() { DestroyBStree(_root); } void Mid() { MidOrder(_root); } void MidOrder(TreeNode *Root) { if(Root==NULL) return; MidOrder(Root->left); cout< Data<<" "; MidOrder(Root->right); } protected: void InsertBStree(TreeNode *root,TreeNode *Node); TreeNode * SearchBStree(TreeNode *Root,TreeNode *Node); TreeNode * MinBStree(TreeNode * Root); TreeNode * MaxBStree(TreeNode * Root); TreeNode * MaxLeftBStree(TreeNode *Root); TreeNode * MinRightBStree(TreeNode *Root); TreeNode * prevBStree(TreeNode *Node); TreeNode * postBStree(TreeNode *Node); void DeleteBStree(TreeNode *Node); void DestroyBStree(TreeNode *Root); private: TreeNode * _root; }; template BStree ::BStree(T *arr,size_t sz) { _root = new TreeNode (arr[0]); for (int i = 1; i < sz; i++) { TreeNode *tmp = new TreeNode (arr[i]); InsertBStree(_root,tmp); } } template void BStree ::InsertBStree(TreeNode *root,TreeNode *Node) { if(root==NULL) root=Node; else { TreeNode *cur=NULL; while(root) { cur=root; if(root->Data > Node->Data) { root=root->left; } else { root=root->right; } } if(Node->Data > cur->Data) { cur->right=Node; Node->parent = cur; } else { cur->left=Node; Node->parent = cur; } } } template TreeNode * BStree ::SearchBStree(TreeNode * Root,TreeNode *Node) { TreeNode *cur=Root; while(cur&&cur->Data!=Node->Data) { if(cur->Data>Node->Data) { cur=cur->left; } else { cur=cur->right; } } if(cur) return cur; else return NULL; } template TreeNode * BStree ::MinBStree(TreeNode * Root) { TreeNode * cur=Root; while(cur->left) { cur=cur->left; } return cur; } template TreeNode * BStree ::MaxBStree(TreeNode * Root) { TreeNode * cur=Root; while(cur->right) { cur=cur->right; } return cur; } template TreeNode * BStree ::MaxLeftBStree(TreeNode *Root) { if (Root->left == NULL) return NULL; TreeNode * cur = Root->left; while(cur->right) { cur = cur->right; } return cur; } template TreeNode * BStree ::MinRightBStree(TreeNode *Root) { if (Root->right == NULL) return NULL; TreeNode * cur = Root->right; while(cur->left) { cur = cur->left; } return cur; } template TreeNode * BStree ::prevBStree(TreeNode *Node) { if (Node->left) return MaxLeftBStree(Node); TreeNode *P = Node->parent; if (Node->left == NULL && Node == P->right) { return Node->parent; } while (P && Node == P->left) { Node = P; P = P->parent; } return P; } template TreeNode * BStree ::postBStree(TreeNode *Node) { if (Node->right) return MinRightBStree(Node); TreeNode *P = Node->parent; if (Node->right == NULL && Node == P->left) { return Node->parent; } while (P && Node == P->right) { Node = P; P = P->parent; } return P; } template void BStree ::DeleteBStree(TreeNode *Node) { TreeNode *cur = Node->parent; if (Node->left == NULL && Node->right == NULL) { if(Node == cur->left) { delete Node; cur->left = NULL; } else { delete Node; cur->right = NULL; } } else if(Node->left == NULL && Node->right) { TreeNode *child = Node->right; if(Node == cur->left) { delete Node; cur->left = child; } else { delete Node; cur->right = child; } } else if(Node->right == NULL && Node->left) { TreeNode *child = Node->left; if(Node == cur->left) { delete Node; cur->left = child; } else { delete Node; cur->right = child; } } else { TreeNode *tmp = postBStree(Node); Node->Data = tmp->Data; DeleteBStree(tmp); } } template void BStree ::DestroyBStree(TreeNode *Root) { if(Root==NULL) return; if(Root->left) DestroyBStree(Root->left); if(Root->right) DestroyBStree(Root->right); delete Root; Root = NULL; } void Test() { int arr[] = {5,3,4,1,7,8,2,6,0,9}; int sz = sizeof(arr)/sizeof(arr[0]); BStree BS(arr,sz); /*BS.Mid(); BS.Insert(10); BS.Mid();*/ /*BS.Max(); BS.Min(); BS.MaxLeft(); BS.MinRight(); BS.Search(6);*/ //BS.PrevNode(9); //BS.PostNode(4); BS.DeleteNode(5); BS.Mid(); //BS.Destroy(); //BS.Mid(); } int main() { Test(); return 0; }