大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
本篇内容介绍了“Mahout-0.9的安装部署方法”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
江西网站建设公司成都创新互联,江西网站设计制作,有大型网站制作公司丰富经验。已为江西成百上千提供企业网站建设服务。企业网站搭建\外贸营销网站建设要多少钱,请找那个售后服务好的江西做网站的公司定做!
1、到官方下载最新版本
2、配置环境变量
export MAHOUT_HOME=/home/wukong/usr/mahout-0.9/ export MAHOUT_CONF_DIR=/home/wukong/usr/mahout-0.9/conf export PATH=$PATH:$MAHOUT_HOME/conf:$MAHOUT_HOME/bin
3、启动测试
[wukong@bd23 ~]$ mahout MAHOUT_LOCAL is not set; adding HADOOP_CONF_DIR to classpath. Running on hadoop, using /home/wukong/usr/hadoop-2.4.1/bin/hadoop and HADOOP_CONF_DIR=/home/wukong/usr/hadoop-2.4.1/etc/hadoop/ MAHOUT-JOB: /home/wukong/usr/mahout-0.9/mahout-examples-0.9-job.jar An example program must be given as the first argument. Valid program names are: arff.vector: : Generate Vectors from an ARFF file or directory baumwelch: : Baum-Welch algorithm for unsupervised HMM training canopy: : Canopy clustering cat: : Print a file or resource as the logistic regression models would see it cleansvd: : Cleanup and verification of SVD output clusterdump: : Dump cluster output to text clusterpp: : Groups Clustering Output In Clusters cmdump: : Dump confusion matrix in HTML or text formats concatmatrices: : Concatenates 2 matrices of same cardinality into a single matrix cvb: : LDA via Collapsed Variation Bayes (0th deriv. approx) cvb0_local: : LDA via Collapsed Variation Bayes, in memory locally. evaluateFactorization: : compute RMSE and MAE of a rating matrix factorization against probes fkmeans: : Fuzzy K-means clustering hmmpredict: : Generate random sequence of observations by given HMM itemsimilarity: : Compute the item-item-similarities for item-based collaborative filtering kmeans: : K-means clustering lucene.vector: : Generate Vectors from a Lucene index lucene2seq: : Generate Text SequenceFiles from a Lucene index matrixdump: : Dump matrix in CSV format matrixmult: : Take the product of two matrices parallelALS: : ALS-WR factorization of a rating matrix qualcluster: : Runs clustering experiments and summarizes results in a CSV recommendfactorized: : Compute recommendations using the factorization of a rating matrix recommenditembased: : Compute recommendations using item-based collaborative filtering regexconverter: : Convert text files on a per line basis based on regular expressions resplit: : Splits a set of SequenceFiles into a number of equal splits rowid: : Map SequenceFileto {SequenceFile , SequenceFile } rowsimilarity: : Compute the pairwise similarities of the rows of a matrix runAdaptiveLogistic: : Score new production data using a probably trained and validated AdaptivelogisticRegression model runlogistic: : Run a logistic regression model against CSV data seq2encoded: : Encoded Sparse Vector generation from Text sequence files seq2sparse: : Sparse Vector generation from Text sequence files seqdirectory: : Generate sequence files (of Text) from a directory seqdumper: : Generic Sequence File dumper seqmailarchives: : Creates SequenceFile from a directory containing gzipped mail archives seqwiki: : Wikipedia xml dump to sequence file spectralkmeans: : Spectral k-means clustering split: : Split Input data into test and train sets splitDataset: : split a rating dataset into training and probe parts ssvd: : Stochastic SVD streamingkmeans: : Streaming k-means clustering svd: : Lanczos Singular Value Decomposition testnb: : Test the Vector-based Bayes classifier trainAdaptiveLogistic: : Train an AdaptivelogisticRegression model trainlogistic: : Train a logistic regression using stochastic gradient descent trainnb: : Train the Vector-based Bayes classifier transpose: : Take the transpose of a matrix validateAdaptiveLogistic: : Validate an AdaptivelogisticRegression model against hold-out data set vecdist: : Compute the distances between a set of Vectors (or Cluster or Canopy, they must fit in memory) and a list of Vectors vectordump: : Dump vectors from a sequence file to text viterbi: : Viterbi decoding of hidden states from given output states sequence
“Mahout-0.9的安装部署方法”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!