大橙子网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

怎么用Java高效读取大文件

这篇文章主要讲解了“怎么用Java高效读取大文件”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么用Java高效读取大文件”吧!

创新互联是一家专业提供大庆企业网站建设,专注与网站建设、网站设计H5开发、小程序制作等业务。10年已为大庆众多企业、政府机构等服务。创新互联专业网络公司优惠进行中。

内存读取

第一个版本,阿粉采用内存读取的方式,所有的数据首先读读取到内存中,程序代码如下:

Stopwatch stopwatch = Stopwatch.createStarted(); // 将全部行数读取的内存中 List lines = FileUtils.readLines(new File("temp/test.txt"), Charset.defaultCharset()); for (String line : lines) {     // pass } stopwatch.stop(); System.out.println("read all lines spend " + stopwatch.elapsed(TimeUnit.SECONDS) + " s"); // 计算内存占用 logMemory();

logMemory方法如下:

MemoryMXBean memoryMXBean = ManagementFactory.getMemoryMXBean(); //堆内存使用情况 MemoryUsage memoryUsage = memoryMXBean.getHeapMemoryUsage(); //初始的总内存 long totalMemorySize = memoryUsage.getInit(); //已使用的内存 long usedMemorySize = memoryUsage.getUsed();  System.out.println("Total Memory: " + totalMemorySize / (1024 * 1024) + " Mb"); System.out.println("Free Memory: " + usedMemorySize / (1024 * 1024) + " Mb");

上述程序中,阿粉使用 Apache Common-Io  开源第三方库,FileUtils#readLines将会把文件中所有内容,全部读取到内存中。

这个程序简单测试并没有什么问题,但是等拿到真正的数据文件,运行程序,很快程序发生了 OOM。

之所以会发生 OOM,主要原因是因为这个数据文件太大。假设上面测试文件 test.txt总共有 200W 行数据,文件大小为:740MB。

通过上述程序读取到内存之后,在我的电脑上内存占用情况如下:

怎么用Java高效读取大文件

可以看到一个实际大小为 700 多 M 的文件,读到内存中占用内存量为 1.5G 之多。而我之前的程序,虚拟机设置内存大小只有 1G,所以程序发生了  OOM。

当然这里最简单的办法就是加内存呗,将虚拟机内存设置到 2G,甚至更多。不过机器内存始终有限,如果文件更大,还是没有办法全部都加载到内存。

不过仔细一想真的需要将全部数据一次性加载到内存中?

很显然,不需要!

在上述的场景中,我们将数据到加载内存中,最后不还是一条条处理数据。

所以下面我们将读取方式修改成逐行读取。

逐行读取

逐行读取的方式比较多,这里阿粉主要介绍两种方式:

  • BufferReader

  • Apache Commons IO

  • Java8 stream

BufferReader

我们可以使用 BufferReader#readLine 逐行读取数据。

try (BufferedReader fileBufferReader = new BufferedReader(new FileReader("temp/test.txt"))) {     String fileLineContent;     while ((fileLineContent = fileBufferReader.readLine()) != null) {         // process the line.     } } catch (FileNotFoundException e) {     e.printStackTrace(); } catch (IOException e) {     e.printStackTrace(); }

Apache Commons IOCommon-IO

中有一个方法  FileUtils#lineIterator可以实现逐行读取方式,使用代码如下:

Stopwatch stopwatch = Stopwatch.createStarted(); LineIterator fileContents = FileUtils.lineIterator(new File("temp/test.txt"), StandardCharsets.UTF_8.name()); while (fileContents.hasNext()) {     fileContents.nextLine();     //  pass } logMemory(); fileContents.close(); stopwatch.stop(); System.out.println("read all lines spend " + stopwatch.elapsed(TimeUnit.SECONDS) + " s");

这个方法返回一个迭代器,每次我们都可以获取的一行数据。

其实我们查看代码,其实可以发现 FileUtils#lineIterator,其实用的就是  BufferReader,感兴趣的同学可以自己查看一下源码。

由于公号内无法插入外链,关注『Java极客技术』,回复『20200610』 获取源码

Java8 stream

Java8 Files 类新增了一个 lines,可以返回 Stream我们可以逐行处理数据。

Stopwatch stopwatch = Stopwatch.createStarted(); // lines(Path path, Charset cs) try (Stream inputStream = Files.lines(Paths.get("temp/test.txt"), StandardCharsets.UTF_8)) {     inputStream             .filter(str -> str.length() > 5)// 过滤数据             .forEach(o -> {                 // pass do sample logic             }); } logMemory(); stopwatch.stop(); System.out.println("read all lines spend " + stopwatch.elapsed(TimeUnit.SECONDS) + " s");

使用这个方法有个好处在于,我们可以方便使用 Stream 链式操作,做一些过滤操作。

注意:这里我们使用 try-with-resources 方式,可以安全的确保读取结束,流可以被安全的关闭。

并发读取

逐行的读取的方式,解决我们 OOM 的问题。不过如果数据很多,我们这样一行行处理,需要花费很多时间。

上述的方式,只有一个线程在处理数据,那其实我们可以多来几个线程,增加并行度。

下面在上面的基础上,阿粉就抛砖引玉,介绍下阿粉自己比较常用两种并行处理方式。

逐行批次打包

第一种方式,先逐行读取数据,加载到内存中,等到积累一定数据之后,然后再交给线程池异步处理。

@SneakyThrows public static void readInApacheIOWithThreadPool() {     // 创建一个 最大线程数为 10,队列最大数为 100 的线程池     ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(10, 10, 60l, TimeUnit.SECONDS, new LinkedBlockingDeque<>(100));     // 使用 Apache 的方式逐行读取数据     LineIterator fileContents = FileUtils.lineIterator(new File("temp/test.txt"), StandardCharsets.UTF_8.name());     List lines = Lists.newArrayList();     while (fileContents.hasNext()) {         String nextLine = fileContents.nextLine();         lines.add(nextLine);         // 读取到十万的时候         if (lines.size() == 100000) {             // 拆分成两个 50000 ,交给异步线程处理             List> partition = Lists.partition(lines, 50000);             List futureList = Lists.newArrayList();             for (List strings : partition) {                 Future future = threadPoolExecutor.submit(() -> {                     processTask(strings);                 });                 futureList.add(future);             }             // 等待两个线程将任务执行结束之后,再次读取数据。这样的目的防止,任务过多,加载的数据过多,导致 OOM             for (Future future : futureList) {                 // 等待执行结束                 future.get();             }             // 清除内容             lines.clear();         }      }     // lines 若还有剩余,继续执行结束     if (!lines.isEmpty()) {         // 继续执行         processTask(lines);     }   threadPoolExecutor.shutdown(); }     private static void processTask(List strings) {         for (String line : strings) {             // 模拟业务执行             try {                 TimeUnit.MILLISECONDS.sleep(10L);             } catch (InterruptedException e) {                 e.printStackTrace();             }         }     }

上述方法,等到内存的数据到达 10000 的时候,拆封两个任务交给异步线程执行,每个任务分别处理 50000 行数据。

后续使用 future#get(),等待异步线程执行完成之后,主线程才能继续读取数据。

之所以这么做,主要原因是因为,线程池的任务过多,再次导致 OOM 的问题。

大文件拆分成小文件第二种方式,首先我们将一个大文件拆分成几个小文件,然后使用多个异步线程分别逐行处理数据。

public static void splitFileAndRead() throws Exception {     // 先将大文件拆分成小文件     List fileList = splitLargeFile("temp/test.txt");     // 创建一个 最大线程数为 10,队列最大数为 100 的线程池     ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(10, 10, 60l, TimeUnit.SECONDS, new LinkedBlockingDeque<>(100));     List futureList = Lists.newArrayList();     for (File file : fileList) {         Future future = threadPoolExecutor.submit(() -> {             try (Stream inputStream = Files.lines(file.toPath(), StandardCharsets.UTF_8)) {                 inputStream.forEach(o -> {                     // 模拟执行业务                     try {                         TimeUnit.MILLISECONDS.sleep(10L);                     } catch (InterruptedException e) {                         e.printStackTrace();                     }                 });             } catch (IOException e) {                 e.printStackTrace();             }         });         futureList.add(future);     }     for (Future future : futureList) {         // 等待所有任务执行结束         future.get();     }     threadPoolExecutor.shutdown();   }  private static List splitLargeFile(String largeFileName) throws IOException {     LineIterator fileContents = FileUtils.lineIterator(new File(largeFileName), StandardCharsets.UTF_8.name());     List lines = Lists.newArrayList();     // 文件序号     int num = 1;     List files = Lists.newArrayList();     while (fileContents.hasNext()) {         String nextLine = fileContents.nextLine();         lines.add(nextLine);         // 每个文件 10w 行数据         if (lines.size() == 100000) {             createSmallFile(lines, num, files);             num++;         }     }     // lines 若还有剩余,继续执行结束     if (!lines.isEmpty()) {         // 继续执行         createSmallFile(lines, num, files);     }     return files; }

上述方法,首先将一个大文件拆分成多个保存 10W 行的数据的小文件,然后再将小文件交给线程池异步处理。

由于这里的异步线程每次都是逐行从小文件的读取数据,所以这种方式不用像上面方法一样担心 OOM 的问题。

另外,上述我们使用 Java 代码,将大文件拆分成小文件。这里阿粉还有一个简单的办法,我们可以直接使用下述命令,直接将大文件拆分成小文件:

# 将大文件拆分成 100000 的小文件  split -l 100000 test.txt

后续 Java 代码只需要直接读取小文件即可。

总结当我们从文件读取数据时,如果文件不是很大,我们可以考虑一次性读取到内存中,然后快速处理。

如果文件过大,我们就没办法一次性加载到内存中,所以我们需要考虑逐行读取,然后处理数据。但是单线程处理数据毕竟有限,所以我们考虑使用多线程,加快处理数据。

感谢各位的阅读,以上就是“怎么用Java高效读取大文件”的内容了,经过本文的学习后,相信大家对怎么用Java高效读取大文件这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!


本文题目:怎么用Java高效读取大文件
文章链接:http://dzwzjz.com/article/goigjp.html
在线咨询
服务热线
服务热线:028-86922220
TOP