大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
本篇文章给大家分享的是有关MapReduce原理介绍,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。
10年积累的成都网站设计、网站制作经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站设计后付款的网站建设流程,更有溧水免费网站建设让你可以放心的选择与我们合作。
MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。
它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。 当前的软件实现是指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce(归约)函数,用来保证所有映射的键值对中的每一个共享相同的键组。
工作原理(推荐学习:Java视频教程)
MapReduce执行流程
上图是论文里给出的流程图。一切都是从最上方的user program开始的,user program链接了MapReduce库,实现了最基本的Map函数和Reduce函数。图中执行的顺序都用数字标记了。
1.MapReduce库先把user program的输入文件划分为M份(M为用户定义),每一份通常有16MB到64MB,如图左方所示分成了split0~4;然后使用fork将用户进程拷贝到集群内其它机器上。
2.user program的副本中有一个称为master,其余称为worker,master是负责调度的,为空闲worker分配作业(Map作业或者Reduce作业),worker的数量也是可以由用户指定的。
3.被分配了Map作业的worker,开始读取对应分片的输入数据,Map作业数量是由M决定的,和split一一对应;Map作业从输入数据中抽取出键值对,每一个键值对都作为参数传递给map函数,map函数产生的中间键值对被缓存在内存中。
4.缓存的中间键值对会被定期写入本地磁盘,而且被分为R个区,R的大小是由用户定义的,将来每个区会对应一个Reduce作业;这些中间键值对的位置会被通报给master,master负责将信息转发给Reduce worker。
5.master通知分配了Reduce作业的worker它负责的分区在什么位置(肯定不止一个地方,每个Map作业产生的中间键值对都可能映射到所有R个不同分区),当Reduce worker把所有它负责的中间键值对都读过来后,先对它们进行排序,使得相同键的键值对聚集在一起。因为不同的键可能会映射到同一个分区也就是同一个Reduce作业(谁让分区少呢),所以排序是必须的。
6.reduce worker遍历排序后的中间键值对,对于每个唯一的键,都将键与关联的值传递给reduce函数,reduce函数产生的输出会添加到这个分区的输出文件中。
7.当所有的Map和Reduce作业都完成了,master唤醒正版的user program,MapReduce函数调用返回user program的代码。
所有执行完毕后,MapReduce输出放在了R个分区的输出文件中(分别对应一个Reduce作业)。用户通常并不需要合并这R个文件,而是将其作为输入交给另一个MapReduce程序处理。整个过程中,输入数据是来自底层分布式文件系统(GFS)的,中间数据是放在本地文件系统的,最终输出数据是写入底层分布式文件系统(GFS)的。而且我们要注意Map/Reduce作业和map/reduce函数的区别:Map作业处理一个输入数据的分片,可能需要调用多次map函数来处理每个输入键值对;Reduce作业处理一个分区的中间键值对,期间要对每个不同的键调用一次reduce函数,Reduce作业最终也对应一个输出文件。
以上就是MapReduce原理介绍,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注创新互联行业资讯频道。