大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
Oracle数据库悲观锁与乐观锁详解
成都创新互联于2013年创立,先为南平等服务建站,南平等地企业,进行企业商务咨询服务。为南平企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。
Oracle数据库悲观锁与乐观锁是本文我们主要要介绍的内容。有时候为了得到最大的性能,一般数据库都有并发机制,不过带来的问题就是数据访问的冲突。为了解决这个问题,大多数数据库用的方法就是数据的锁定。
数据的锁定分为两种方法,第一种叫做悲观锁,第二种叫做乐观锁。什么叫悲观锁呢,悲观锁顾名思义,就是对数据的冲突采取一种悲观的态度,也就是说假设数据肯定会冲突,所以在数据开始读取的时候就把数据锁定住。而乐观锁就是认为数据一般情况下不会造成冲突,所以在数据进行提交更新的时候,才会正式对数据的冲突与否进行检测,如果发现冲突了,则让用户返回错误的信息,让用户决定如何去做。
先从悲观锁开始说。在SqlServer等其余很多数据库中,数据的锁定通常采用页级锁的方式,也就是说对一张表内的数据是一种串行化的更新插入机制,在任何时间同一张表只会插1条数据,别的想插入的数据要等到这一条数据插完以后才能依次插入。带来的后果就是性能的降低,在多用户并发访问的时候,当对一张表进行频繁操作时,会发现响应效率很低,数据库经常处于一种假死状态。而Oracle用的是行级锁,只是对想锁定的数据才进行锁定,其余的数据不相干,所以在对Oracle表中并发插数据的时候,基本上不会有任何影响。
注:对于悲观锁是针对并发的可能性比较大,而一般在我们的应用中用乐观锁足以。
Oracle的悲观锁需要利用一条现有的连接,分成两种方式,从SQL语句的区别来看,就是一种是for update,一种是for update nowait的形式。比如我们看一个例子。首先建立测试用的数据库表。
CREATE TABLE TEST(ID,NAME,LOCATION,VALUE,CONSTRAINT test_pk PRIMARY KEY(ID))AS SELECT deptno, dname, loc, 1 FROM scott.dept
这里我们利用了Oracle的Sample的scott用户的表,把数据copy到我们的test表中。首先我们看一下for update锁定方式。首先我们执行如下的select for update语句。
select * from test where id = 10 for update
通过这条检索语句锁定以后,再开另外一个sql*plus窗口进行操作,再把上面这条sql语句执行一便,你会发现sqlplus好像死在那里了,好像检索不到数据的样子,但是也不返回任何结果,就属于卡在那里的感觉。这个时候是什么原因呢,就是一开始的第一个Session中的select for update语句把数据锁定住了。由于这里锁定的机制是wait的状态(只要不表示nowait那就是wait),所以第二个Session(也就是卡住的那个sql*plus)中当前这个检索就处于等待状态。当第一个session最后commit或者rollback之后,第二个session中的检索结果就是自动跳出来,并且也把数据锁定住。不过如果你第二个session中你的检索语句如下所示。
select * from test where id = 10
也就是没有for update这种锁定数据的语句的话,就不会造成阻塞了。另外一种情况,就是当数据库数据被锁定的时候,也就是执行刚才for update那条sql以后,我们在另外一个session中执行for update nowait后又是什么样呢。比如如下的sql语句。 由于这条语句中是制定采用nowait方式来进行检索,所以当发现数据被别的session锁定中的时候,就会迅速返回ORA-00054错误,内容是资源正忙, 但指定以 NOWAIT 方式获取资源。所以在程序中我们可以采用nowait方式迅速判断当前数据是否被锁定中,如果锁定中的话,就要采取相应的业务措施进行处理。
select * from test where id = 10 for update nowait
那这里另外一个问题,就是当我们锁定住数据的时候,我们对数据进行更新和删除的话会是什么样呢。比如同样,我们让第一个Session锁定住id=10的那条数据,我们在第二个session中执行如下语句。
update test set value=2 where id = 10
这个时候我们发现update语句就好像select for update语句一样也停住卡在这里,当你第一个session放开锁定以后update才能正常运行。当你update运行后,数据又被你update语句锁定住了,这个时候只要你update后还没有commit,别的session照样不能对数据进行锁定更新等等。
总之,Oracle中的悲观锁就是利用Oracle的Connection对数据进行锁定。在Oracle中,用这种行级锁带来的性能损失是很小的,只是要注意程序逻辑,不要给你一不小心搞成死锁了就好。而且由于数据的及时锁定,在数据提交时候就不呼出现冲突,可以省去很多恼人的数据冲突处理。缺点就是你必须要始终有一条数据库连接,就是说在整个锁定到最后放开锁的过程中,你的数据库联接要始终保持住。与悲观锁相对的,我们有了乐观锁。乐观锁一开始也说了,就是一开始假设不会造成数据冲突,在最后提交的时候再进行数据冲突检测。
在乐观锁中,我们有3种常用的做法来实现:
[1]第一种就是在数据取得的时候把整个数据都copy到应用中,在进行提交的时候比对当前数据库中的数据和开始的时候更新前取得的数据。当发现两个数据一模一样以后,就表示没有冲突可以提交,否则则是并发冲突,需要去用业务逻辑进行解决。
[2]第二种乐观锁的做法就是采用版本戳,这个在hibernate中得到了使用。采用版本戳的话,首先需要在你有乐观锁的数据库table上建立一个新的column,比如为number型,当你数据每更新一次的时候,版本数就会往上增加1。比如同样有2个session同样对某条数据进行操作。两者都取到当前的数据的版本号为1,当第一个session进行数据更新后,在提交的时候查看到当前数据的版本还为1,和自己一开始取到的版本相同。就正式提交,然后把版本号增加1,这个时候当前数据的版本为2。
当第二个session也更新了数据提交的时候,发现数据库中版本为2,和一开始这个session取到的版本号不一致,就知道别人更新过此条数据,这个时候再进行业务处理,比如整个Transaction都Rollback等等操作。在用版本戳的时候,可以在应用程序侧使用版本戳的验证,也可以在数据库侧采用Trigger(触发器)来进行验证。不过数据库的Trigger的性能开销还是比较的大,所以能在应用侧进行验证的话还是推荐不用Trigger。
[3]第三种做法和第二种做法有点类似,就是也新增一个Table的Column,不过这次这个column是采用timestamp型,存储数据最后更新的时间。在Oracle9i以后可以采用新的数据类型,也就是timestamp with time zone类型来做时间戳。这种Timestamp的数据精度在Oracle的时间类型中是最高的,精确到微秒(还没与到纳秒的级别),一般来说,加上数据库处理时间和人的思考动作时间,微秒级别是非常非常够了,其实只要精确到毫秒甚至秒都应该没有什么问题。和刚才的版本戳类似,也是在更新提交的时候检查当前数据库中数据的时间戳和自己更新前取到的时间戳进行对比,如果一致则OK,否则就是版本冲突。如果不想把代码写在程序中或者由于别的原因无法把代码写在现有的程序中,也可以把这个时间戳乐观锁逻辑写在Trigger或者存储过程中。
sqlserver
本身通过不同等级的锁处理并发控制。
有记录锁、页锁、表锁。
如果多个用户同时操作一个记录,只有第一个能修改,后面的修改时处理等等状态。
但是在一般程序界面上,多个人同时打开了同一个记录要进行修改,数据库往往是保存最后一个修改的数据。可以在保存前做验证,如果发现打开的数据已改变(界面和数据库一不致了),则提示数据已改变,重新获取新数据,然后才能修改和保存。
各种大型数据库所采用的锁的基本理论是一致的,但在具体实现上各有差别。SQLServer更强调由系统来管理锁。在用户有SQL请求时,系统分析请求,自动在满足锁定条件和系统性能之间为数据库加上适当的锁,同时系统在运行期间常常自动进行优化处理,实行动态加锁。对于一般的用户而言,通过系统的自动锁定管理机制基本可以满足使用要求,但如果对数据安全、数据库完整性和一致性有特殊要求,就需要了解SQLServer的锁机制,掌握数据库锁定方法。 锁是数据库中的一个非常重要的概念,它主要用于多用户环境下保证数据库完整性和一致性。我们知道,多个用户能够同时操纵同一个数据库中的数据,会发生数据不一致现象。即如果没有锁定且多个用户同时访问一个数据库,则当他们的事务同时使用相同的数据时可能会发生问题。这些问题包括:丢失更新、脏读、不可重复读和幻觉读: 1.当两个或多个事务选择同一行,然后基于最初选定的值更新该行时,会发生丢失更新问题。每个事务都不知道其它事务的存在。最后的更新将重写由其它事务所做的更新,这将导致数据丢失。例如,两个编辑人员制作了同一文档的电子复本。每个编辑人员独立地更改其复本,然后保存更改后的复本,这样就覆盖了原始文档。最后保存其更改复本的编辑人员覆盖了第一个编辑人员所做的更改。如果在第一个编辑人员完成之后第二个编辑人员才能进行更改,则可以避免该问题。 2.脏读就是指当一个事务正在访问数据,并且对数据进行了修改,而这种修改还没有提交到数据库中,这时,另外一个事务也访问这个数据,然后使用了这个数据。因为这个数据是还没有提交的数据,那么另外一个事务读到的这个数据是脏数据,依据脏数据所做的操作可能是不正确的。例如,一个编辑人员正在更改电子文档。在更改过程中,另一个编辑人员复制了该文档(该复本包含到目前为止所做的全部更改)并将其分发给预期的用户。此后,第一个编辑人员认为目前所做的更改是错误的,于是删除了所做的编辑并保存了文档。分发给用户的文档包含不再存在的编辑内容,并且这些编辑内容应认为从未存在过。如果在第一个编辑人员确定最终更改前任何人都不能读取更改的文档,则可以避免该问题。 3.不可重复读是指在一个事务内,多次读同一数据。在这个事务还没有结束时,另外一个事务也访问该同一数据。那么,在第一个事务中的两次读数据之间,由于第二个事务的修改,那么第一个事务两次读到的的数据可能是不一样的。这样就发生了在一个事务内两次读到的数据是不一样的,因此称为是不可重复读。例如,一个编辑人员两次读取同一文档,但在两次读取之间,作者重写了该文档。当编辑人员第二次读取文档时,文档已更改。原始读取不可重复。如果只有在作者全部完成编写后编辑人员才可以读取文档,则可以避免该问题。 4.幻觉读是指当事务不是独立执行时发生的一种现象,例如第一个事务对一个表中的数据进行了修改,这种修改涉及到表中的全部数据行。同时,第二个事务也修改这个表中的数据,这种修改是向表中插入一行新数据。那么,以后就会发生操作第一个事务的用户发现表中还有没有修改的数据行,就好象发生了幻觉一样。例如,一个编辑人员更改作者提交的文档,但当生产部门将其更改内容合并到该文档的主复本时,发现作者已将未编辑的新材料添加到该文档中。如果在编辑人员和生产部门完成对原始文档的处理之前,任何人都不能将新材料添加到文档中,则可以避免该问题。 所以,处理多用户并发访问的方法是加锁。锁是防止其他事务访问指定的资源控制、实现并发控制的一种主要手段。当一个用户锁住数据库中的某个对象时,其他用户就不能再访问该对象。加锁对并发访问的影响体现在锁的粒度上。为了控制锁定的资源,应该首先了解系统的空间管理。在SQLServer2000系统中,最小的空间管理单位是页,一个页有8K。所有的数据、日志、索引都存放在页上。另外,使用页有一个限制,这就是表中的一行数据必须在同一个页上,不能跨页。页上面的空间管理单位是盘区,一个盘区是8个连续的页。表和索引的最小占用单位是盘区。数据库是由一个或者多个表或者索引组成,即是由多个盘区组成。放在一个表上的锁限制对整个表的并发访问;放在盘区上的锁限制了对整个盘区的访问;放在数据页上的锁限制了对整个数据页的访问;放在行上的锁只限制对该行的并发访问。 SQLServer2000具有多粒度锁定,允许一个事务锁定不同类型的的资源。为了使锁定的成本减至最少,SQLServer自动将资源锁定在适合任务的级别。锁定在较小的粒度(例如行)可以增加并发但需要较大的开销,因为如果锁定了许多行,则需要控制更多的锁。锁定在较大的粒度(例如表)就并发而言是相当昂贵的,因为锁定整个表限制了其它事务对表中任意部分进行访问,但要求的开销较低,因为需要维护的锁较少。SQLServer可以锁定行、页、扩展盘区、表、库等资源。 行是可以锁定的最小空间,行级锁占用的数据资源最少,所以在事务的处理过程中,允许其他事务继续操纵同一个表或者同一个页的其他数据,大大降低了其他事务等待处理的时间,提高了系统的并发性。 页级锁是指在事务的操纵过程中,无论事务处理数据的多少,每一次都锁定一页,在这个页上的数据不能被其他事务操纵。在SQLServer7.0以前,使用的是页级锁。页级锁锁定的资源比行级锁锁定的数据资源多。在页级锁中,即使是一个事务只操纵页上的一行数据,那么该页上的其他数据行也不能被其他事务使用。因此,当使用页级锁时,会出现数据的浪费现象,也就是说,在同一个页上会出现数据被占用却没有使用的现象。在这种现象中,数据的浪费最多不超过一个页上的数据行。 表级锁也是一个非常重要的锁。表级锁是指事务在操纵某一个表的数据时,锁定了这个数据所在的整个表,其他事务不能访问该表中的其他数据。当事务处理的数据量比较大时,一般使用表级锁。表级锁的特点是使用比较少的系统资源,但是却占用比较多的数据资源。与行级锁和页级锁相比,表级锁占用的系统资源例如内存比较少,但是占用的数据资源却是最大。在表级锁时,有可能出现数据的大量浪费现象,因为表级锁锁定整个表,那么其他的事务都不能操纵表中的其他数据。 盘区锁是一种特殊类型的锁,只能用在一些特殊的情况下。簇级锁就是指事务占用一个盘区,这个盘区不能同时被其他事务占用。例如在创建数据库和创建表时,系统分配物理空间时使用这种类型的锁。系统是按照盘区分配空间的。当系统分配空间时,使用盘区锁,防止其他事务同时使用同一个盘区。当系统完成分配空间之后,就不再使用这种类型的盘区锁。特别是,当涉及到对数据操作的事务时,不使用盘区锁。 数据库级锁是指锁定整个数据库,防止任何用户或者事务对锁定的数据库进行访问。数据库级锁是一种非常特殊的锁,它只是用于数据库的恢复操作过程中。这种等级的锁是一种最高等级的锁,因为它控制整个数据库的操作。只要对数据库进行恢复操作,那么就需要设置数据库为单用户模式,这样系统就能防止其他用户对该数据库进行各种操作。 行级锁是一种最优锁,因为行级锁不可能出现数据既被占用又没有使用的浪费现象。但是,如果用户事务中频繁对某个表中的多条记录操作,将导致对该表的许多记录行都加上了行级锁,数据库系统中锁的数目会急剧增加,这样就加重了系统负荷,影响系统性能。因此,在SQLServer中,还支持锁升级(lockescalation)。所谓锁升级是指调整锁的粒度,将多个低粒度的锁替换成少数的更高粒度的锁,以此来降低系统负荷。在SQLServer中当一个事务中的锁较多,达到锁升级门限时,系统自动将行级锁和页面锁升级为表级锁。
SELECT au_lname FROM authors WITH (ROWLOCK )
锁定提示 描述
HOLDLOCK 将共享锁保留到事务完成,而不是在相应的表、行或数据页不再需要时就立即释放锁。HOLDLOCK等同于SERIALIZABLE。
NOLOCK 不要发出共享锁,并且不要提供排它锁。当此选项生效时,可能会读取未提交的事务或一组在读取中间回滚的页面。有可能发生脏读。仅应用于 SELECT语句。
PAGLOCK 在通常使用单个表锁的地方采用页锁。
READCOMMITTED 用与运行在提交读隔离级别的事务相同的锁语义执行扫描。默认情况下,SQLServer 2000 在此隔离级别上操作。
READPAST 跳过锁定行。此选项导致事务跳过由其它事务锁定的行(这些行平常会显示在结果集内),而不是阻塞该事务,使其等待其它事务释放在这些行上的锁。READPAST 锁提示仅适用于运行在提交读隔离级别的事务,并且只在行级锁之后读取。仅适用于SELECT 语句。
READUNCOMMITTED 等同于NOLOCK。
REPEATABLEREAD 用与运行在可重复读隔离级别的事务相同的锁语义执行扫描。
ROWLOCK 使用行级锁,而不使用粒度更粗的页级锁和表级锁。
SERIALIZABLE 用与运行在可串行读隔离级别的事务相同的锁语义执行扫描。等同于HOLDLOCK。
TABLOCK 使用表锁代替粒度更细的行级锁或页级锁。在语句结束前,SQLServer 一直持有该锁。但是,如果同时指定 HOLDLOCK,那么在事务结束之前,锁将被一直持有。
TABLOCKX 使用表的排它锁。该锁可以防止其它事务读取或更新表,并在语句或事务结束前一直持有。
UPDLOCK 读取表时使用更新锁,而不使用共享锁,并将锁一直保留到语句或事务的结束。UPDLOCK 的优点是允许您读取数据(不阻塞其它事务)并在以后更新数据,同时确保自从上次读取数据后数据没有被更改。
XLOCK 使用排它锁并一直保持到由语句处理的所有数据上的事务结束时。可以使用 PAGLOCK或 TABLOCK 指定该锁,这种情况下排它锁适用于适当级别的粒度
(1)
HOLDLOCK:
在该表上保持共享锁,直到整个事务结束,而不是在语句执行完立即释放所添加的锁。
(2)
NOLOCK:不添加共享锁和排它锁,当这个选项生效后,可能读到未提交读的数据或“脏数据”,这个选项仅仅应用于SELECT语句。
(3)
PAGLOCK:指定添加页锁(否则通常可能添加表锁)。
(4)
READCOMMITTED用与运行在提交读隔离级别的事务相同的锁语义执行扫描。默认情况下,SQL
Server
2000
在此隔离级别上操作。
(5)
READPAST:
跳过已经加锁的数据行,这个选项将使事务读取数据时跳过那些已经被其他事务锁定的数据行,而不是阻塞直到其他事务释放锁,
READPAST仅仅应用于READ
COMMITTED隔离性级别下事务操作中的SELECT语句操作。
(6)
READUNCOMMITTED:等同于NOLOCK。
(7)
REPEATABLEREAD:设置事务为可重复读隔离性级别。
(8)
ROWLOCK:使用行级锁,而不使用粒度更粗的页级锁和表级锁。
(9)
SERIALIZABLE:用与运行在可串行读隔离级别的事务相同的锁语义执行扫描。等同于
HOLDLOCK。
(10)
TABLOCK:指定使用表级锁,而不是使用行级或页面级的锁,SQL
Server在该语句执行完后释放这个锁,而如果同时指定了...(1)
HOLDLOCK:
在该表上保持共享锁,直到整个事务结束,而不是在语句执行完立即释放所添加的锁。
(2)
NOLOCK:不添加共享锁和排它锁,当这个选项生效后,可能读到未提交读的数据或“脏数据”,这个选项仅仅应用于SELECT语句。
(3)
PAGLOCK:指定添加页锁(否则通常可能添加表锁)。
(4)
READCOMMITTED用与运行在提交读隔离级别的事务相同的锁语义执行扫描。默认情况下,SQL
Server
2000
在此隔离级别上操作。
(5)
READPAST:
跳过已经加锁的数据行,这个选项将使事务读取数据时跳过那些已经被其他事务锁定的数据行,而不是阻塞直到其他事务释放锁,
READPAST仅仅应用于READ
COMMITTED隔离性级别下事务操作中的SELECT语句操作。
(6)
READUNCOMMITTED:等同于NOLOCK。
(7)
REPEATABLEREAD:设置事务为可重复读隔离性级别。
(8)
ROWLOCK:使用行级锁,而不使用粒度更粗的页级锁和表级锁。
(9)
SERIALIZABLE:用与运行在可串行读隔离级别的事务相同的锁语义执行扫描。等同于
HOLDLOCK。
(10)
TABLOCK:指定使用表级锁,而不是使用行级或页面级的锁,SQL
Server在该语句执行完后释放这个锁,而如果同时指定了HOLDLOCK,该锁一直保持到这个事务结束。
(11)
TABLOCKX:指定在表上使用排它锁,这个锁可以阻止其他事务读或更新这个表的数据,直到这个语句或整个事务结束。
(12)
UPDLOCK
:指定在
读表中数据时设置更新
锁(update
lock)而不是设置共享锁,该锁一直保持到这个语句或整个事务结束,使用UPDLOCK的作用是允许用户先读取数据(而且不阻塞其他用户读数据),并且保证在后来再更新数据时,这一段时间内这些数据没有被其他用户修改。
这个和C# 没有关系,是数据库锁层面的原因,你只要执行的SQL 语句发出明确的带锁指令即可。
SQL Server 锁类型(与粒度相对应)
1. HOLDLOCK: 在该表上保持共享锁,直到整个事务结束,而不是在语句执行完立即释放所添加的锁。
2. NOLOCK:不添加共享锁和排它锁,当这个选项生效后,可能读到未提交读的数据或“脏数据”,这个选项仅仅应用于SELECT语句。
3. PAGLOCK:指定添加页锁(否则通常可能添加表锁)。
4. READCOMMITTED用与运行在提交读隔离级别的事务相同的锁语义执行扫描。默认情况下,SQL Server 2000 在此隔离级别上操作。
5. READPAST: 跳过已经加锁的数据行,这个选项将使事务读取数据时跳过那些已经被其他事务锁定的数据行,而不是阻塞直到其他事务释放锁,READPAST仅仅应用于READ COMMITTED隔离性级别下事务操作中的SELECT语句操作。
6. READUNCOMMITTED:等同于NOLOCK。
7. REPEATABLEREAD:设置事务为可重复读隔离性级别。
8. ROWLOCK:使用行级锁,而不使用粒度更粗的页级锁和表级锁。
9. SERIALIZABLE:用与运行在可串行读隔离级别的事务相同的锁语义执行扫描。等同于 HOLDLOCK。
10. TABLOCK:指定使用表级锁,而不是使用行级或页面级的锁,SQL Server在该语句执行完后释放这个锁,而如果同时指定了HOLDLOCK,该锁一直保持到这个事务结束。
11. TABLOCKX:指定在表上使用排它锁,这个锁可以阻止其他事务读或更新这个表的数据,直到这个语句或整个事务结束。
12. UPDLOCK :指定在读表中数据时设置更新 锁(update lock)而不是设置共享锁,该锁一直保持到这个语句或整个事务结束,使用UPDLOCK的作用是允许用户先读取数据(而且不阻塞其他用户读数据),并且保证在后来再更新数据时,这一段时间内这些数据没有被其他用户修改。
下面的示例 为
--锁表(其它事务不能读、更新、删除)
SELECT * FROM 表名 WITH(TABLOCKX);