大橙子网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
什么是NoSQL
在通榆等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供网站设计、成都网站建设 网站设计制作按需网站开发,公司网站建设,企业网站建设,成都品牌网站建设,成都全网营销,外贸网站制作,通榆网站建设费用合理。
大家有没有听说过“NoSQL”呢?近年,这个词极受关注。看到“NoSQL”这个词,大家可能会误以为是“No!SQL”的缩写,并深感愤怒:“SQL怎么会没有必要了呢?”但实际上,它是“Not Only SQL”的缩写。它的意义是:适用关系型数据库的时候就使用关系型数据库,不适用的时候也没有必要非使用关系型数据库不可,可以考虑使用更加合适的数据存储。
为弥补关系型数据库的不足,各种各样的NoSQL数据库应运而生。
为了更好地了解本书所介绍的NoSQL数据库,对关系型数据库的理解是必不可少的。那么,就让我们先来看一看关系型数据库的历史、分类和特征吧。
关系型数据库简史
1969年,埃德加?6?1弗兰克?6?1科德(Edgar Frank Codd)发表了划时代的论文,首次提出了关系数据模型的概念。但可惜的是,刊登论文的《IBM Research Report》只是IBM公司的内部刊物,因此论文反响平平。1970年,他再次在刊物《Communication of the ACM》上发表了题为“A Relational Model of Data for Large Shared Data banks”(大型共享数据库的关系模型)的论文,终于引起了大家的关注。
科德所提出的关系数据模型的概念成为了现今关系型数据库的基础。当时的关系型数据库由于硬件性能低劣、处理速度过慢而迟迟没有得到实际应用。但之后随着硬件性能的提升,加之使用简单、性能优越等优点,关系型数据库得到了广泛的应用。
通用性及高性能
虽然本书是讲解NoSQL数据库的,但有一个重要的大前提,请大家一定不要误解。这个大前提就是“关系型数据库的性能绝对不低,它具有非常好的通用性和非常高的性能”。毫无疑问,对于绝大多数的应用来说它都是最有效的解决方案。
突出的优势
关系型数据库作为应用广泛的通用型数据库,它的突出优势主要有以下几点:
保持数据的一致性(事务处理)
由于以标准化为前提,数据更新的开销很小(相同的字段基本上都只有一处)
可以进行JOIN等复杂查询
存在很多实际成果和专业技术信息(成熟的技术)
这其中,能够保持数据的一致性是关系型数据库的最大优势。在需要严格保证数据一致性和处理完整性的情况下,用关系型数据库是肯定没有错的。但是有些情况不需要JOIN,对上述关系型数据库的优点也没有什么特别需要,这时似乎也就没有必要拘泥于关系型数据库了。
关系型数据库的不足
不擅长的处理
就像之前提到的那样,关系型数据库的性能非常高。但是它毕竟是一个通用型的数据库,并不能完全适应所有的用途。具体来说它并不擅长以下处理:
大量数据的写入处理
为有数据更新的表做索引或表结构(schema)变更
字段不固定时应用
对简单查询需要快速返回结果的处理
。。。。。。
NoSQL数据库
为了弥补关系型数据库的不足(特别是最近几年),NoSQL数据库出现了。关系型数据库应用广泛,能进行事务处理和JOIN等复杂处理。相对地,NoSQL数据库只应用在特定领域,基本上不进行复杂的处理,但它恰恰弥补了之前所列举的关系型数据库的不足之处。
易于数据的分散
如前所述,关系型数据库并不擅长大量数据的写入处理。原本关系型数据库就是以JOIN为前提的,就是说,各个数据之间存在关联是关系型数据库得名的主要原因。为了进行JOIN处理,关系型数据库不得不把数据存储在同一个服务器内,这不利于数据的分散。相反,NoSQL数据库原本就不支持JOIN处理,各个数据都是独立设计的,很容易把数据分散到多个服务器上。由于数据被分散到了多个服务器上,减少了每个服务器上的数据量,即使要进行大量数据的写入操作,处理起来也更加容易。同理,数据的读入操作当然也同样容易。
提升性能和增大规模
下面说一点题外话,如果想要使服务器能够轻松地处理更大量的数据,那么只有两个选择:一是提升性能,二是增大规模。下面我们来整理一下这两者的不同。
首先,提升性能指的就是通过提升现行服务器自身的性能来提高处理能力。这是非常简单的方法,程序方面也不需要进行变更,但需要一些费用。若要购买性能翻倍的服务器,需要花费的资金往往不只是原来的2倍,可能需要多达5到10倍。这种方法虽然简单,但是成本较高。
另一方面,增大规模指的是使用多台廉价的服务器来提高处理能力。它需要对程序进行变更,但由于使用廉价的服务器,可以控制成本。另外,以后只要依葫芦画瓢增加廉价服务器的数量就可以了。
不对大量数据进行处理的话就没有使用的必要吗?
NoSQL数据库基本上来说为了“使大量数据的写入处理更加容易(让增加服务器数量更容易)”而设计的。但如果不是对大量数据进行操作的话,NoSQL数据库的应用就没有意义吗?
答案是否定的。的确,它在处理大量数据方面很有优势。但实际上NoSQL数据库还有各种各样的特点,如果能够恰当地利用这些特点将会是非常有帮助。具体的例子将会在第2章和第3章进行介绍,这些用途将会让你感受到利用NoSQL的好处。
希望顺畅地对数据进行缓存(Cache)处理
希望对数组类型的数据进行高速处理
希望进行全部保存
多样的NoSQL数据库
NoSQL数据库存在着“key-value存储”、“文档型数据库”、“列存储数据库”等各种各样的种类,每种数据库又包含各自的特点。下一节让我们一起来了解一下NoSQL数据库的种类和特点。
NoSQL数据库是什么
NoSQL说起来简单,但实际上到底有多少种呢?我在提笔的时候,到NoSQL的官方网站上确认了一下,竟然已经有122种了。另外官方网站上也介绍了本书没有涉及到的图形数据库和对象数据库等各个类别。不知不觉间,原来已经出现了这么多的NoSQL数据库啊。
本节将为大家介绍具有代表性的NoSQL数据库。
key-value存储
这是最常见的NoSQL数据库,它的数据是以key-value的形式存储的。虽然它的处理速度非常快,但是基本上只能通过key的完全一致查询获取数据。根据数据的保存方式可以分为临时性、永久性和两者兼具三种。
临时性
memcached属于这种类型。所谓临时性就是 “数据有可能丢失”的意思。memcached把所有数据都保存在内存中,这样保存和读取的速度非常快,但是当memcached停止的时候,数据就不存在了。由于数据保存在内存中,所以无法操作超出内存容量的数据(旧数据会丢失)。
在内存中保存数据
可以进行非常快速的保存和读取处理
数据有可能丢失
永久性
Tokyo Tyrant、Flare、ROMA等属于这种类型。和临时性相反,所谓永久性就是“数据不会丢失”的意思。这里的key-value存储不像memcached那样在内存中保存数据,而是把数据保存在硬盘上。与memcached在内存中处理数据比起来,由于必然要发生对硬盘的IO操作,所以性能上还是有差距的。但数据不会丢失是它最大的优势。
在硬盘上保存数据
可以进行非常快速的保存和读取处理(但无法与memcached相比)
数据不会丢失
两者兼具
Redis属于这种类型。Redis有些特殊,临时性和永久性兼具,且集合了临时性key-value存储和永久性key-value存储的优点。Redis首先把数据保存到内存中,在满足特定条件(默认是15分钟一次以上,5分钟内10个以上,1分钟内10000个以上的key发生变更)的时候将数据写入到硬盘中。这样既确保了内存中数据的处理速度,又可以通过写入硬盘来保证数据的永久性。这种类型的数据库特别适合于处理数组类型的数据。
同时在内存和硬盘上保存数据
可以进行非常快速的保存和读取处理
保存在硬盘上的数据不会消失(可以恢复)
适合于处理数组类型的数据
面向文档的数据库
MongoDB、CouchDB属于这种类型。它们属于NoSQL数据库,但与key-value存储相异。
不定义表结构
面向文档的数据库具有以下特征:即使不定义表结构,也可以像定义了表结构一样使用。关系型数据库在变更表结构时比较费事,而且为了保持一致性还需修改程序。然而NoSQL数据库则可省去这些麻烦(通常程序都是正确的),确实是方便快捷。
可以使用复杂的查询条件
跟key-value存储不同的是,面向文档的数据库可以通过复杂的查询条件来获取数据。虽然不具备事务处理和JOIN这些关系型数据库所具有的处理能力,但除此以外的其他处理基本上都能实现。这是非常容易使用的NoSQL数据库。
不需要定义表结构
可以利用复杂的查询条件
面向列的数据库
Cassandra、Hbase、HyperTable属于这种类型。由于近年来数据量出现爆发性增长,这种类型的NoSQL数据库尤其引人注目。
面向行的数据库和面向列的数据库
普通的关系型数据库都是以行为单位来存储数据的,擅长进行以行为单位的读入处理,比如特定条件数据的获取。因此,关系型数据库也被称为面向行的数据库。相反,面向列的数据库是以列为单位来存储数据的,擅长以列为单位读入数据。
高扩展性
面向列的数据库具有高扩展性,即使数据增加也不会降低相应的处理速度(特别是写入速度),所以它主要应用于需要处理大量数据的情况。另外,利用面向列的数据库的优势,把它作为批处理程序的存储器来对大量数据进行更新也是非常有用的。但由于面向列的数据库跟现行数据库存储的思维方式有很大不同,应用起来十分困难。
高扩展性(特别是写入处理)
应用十分困难
最近,像Twitter和Facebook这样需要对大量数据进行更新和查询的网络服务不断增加,面向列的数据库的优势对其中一些服务是非常有用的,但是由于这与本书所要介绍的内容关系不大,就不进行详细介绍了。
总结:
NoSQL并不是No-SQL,而是指Not Only SQL。
NoSQL的出现是为了弥补SQL数据库因为事务等机制带来的对海量数据、高并发请求的处理的性能上的欠缺。
NoSQL不是为了替代SQL而出现的,它是一种替补方案,而不是解决方案的首选。
绝大多数的NoSQL产品都是基于大内存和高性能随机读写的(比如具有更高性能的固态硬盘阵列),一般的小型企业在选择NoSQL时一定要慎重!不要为了NoSQL而NoSQL,可能会导致花了冤枉钱又耽搁了项目进程。
NoSQL不是万能的,但在大型项目中,你往往需要它!
即非关系型数据库和关系型数据库。
MySQL的优点:事务处理—保持数据的一致性;由于以标准化为前提,数据更新的开销很小(相同的字段基本上只有一处);可以进行Join等复杂查询
NoSQL的优点:首先它是基于内存的,也就是数据放在内存中,而不是像数据库那样把数据放在磁盘上,而内存的读取速度是磁盘读取速度的几十倍到上百倍,所以NoSQL工具的速度远比数据库读取速度要快得多,满足了高响应的要求。即使NoSQL将数据放在磁盘中,它也是一种半结构化的数据 格式,读取到解析的复杂度远比MySQL要简单,这是因为MySQL存储的是经过结构化、多范式等有复杂规则的数据,还原为内存结构的速度较慢。NoSQL在很大程度上满足了高并发、快速读/和响应的要求,所以它也是Java互联网系统的利器。
简单的扩展:典型例子是Cassandra,由于其架构是类似于经典的P2P,所以能通过轻松地添加新的节点来扩展这个集群;
低廉的成本:这是大多数分布式数据库共有的特点,因为主要都是开源软件,没有昂贵的License成本;
NoSQL的缺点:大多数NoSQL数据库都不支持事务,也不像 SQL Server和Oracle那样能提供各种附加功能,比如BI和报表等; 不提供对SQL的支持
那么该如何选择?
如果规模和性能比24小时的数据一致性更重要,那NoSQL是一个理想的选择 (NoSQL依赖于BASE模型——基本可用、软状态、最终一致性)。
但如果要保证到“始终一致”,尤其是对于机密信息和财务信息,那么MySQL很可能是最优的选择(MySQL依赖于ACID模型——原子性、一致性、独立性和耐久性)。
如果关系数据库在你的应用场景中,完全能够很好的工作,而你又是非常善于使用和维护关系数据库的,那么我觉得你完全没有必要迁移到NoSQL上面,除非你是个喜欢折腾的人。如果你是在金融,电信等以数据为王的关键领域,目前使用的是Oracle数据库来提供高可靠性的,除非遇到特别大的瓶颈,不然也别贸然尝试NoSQL。
然而,在WEB2.0的网站中,关系数据库大部分都出现了瓶颈。在磁盘IO、数据库可扩展上都花费了开发人员相当多的精力来优化,比如做分表分库(database sharding)、主从复制、异构复制等等,然而,这些工作需要的技术能力越来越高,也越来越具有挑战性。如果你正在经历这些场合,那么我觉得你应该尝试一下NoSQL了。
具体问题具体分析
MySQL体积小、速度快、成本低、结构稳定、便于查询,可以保证数据的一致性,但缺乏灵活性。
NoSQL高性能、高扩展、高可用,不用局限于固定的结构,减少了时间和空间上的开销,却又很难保证数据一致性。
————————————————
版权声明:本文为CSDN博主「蒟蒻熊」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:
Web1.0的时代,数据访问量很有限,用一夫当关的高性能的单点服务器可以解决大部分问题。
随着Web2.0的时代的到来,用户访问量大幅度提升,同时产生了大量的用户数据。加上后来的智能移动设备的普及,所有的互联网平台都面临了巨大的性能挑战。
NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,泛指非关系型的数据库。
NoSQL 不依赖业务逻辑方式存储,而以简单的key-value模式存储。因此大大的增加了数据库的扩展能力。
Memcache Memcache Redis Redis MongoDB MongoDB 列式数据库 列式数据库 Hbase Hbase
HBase是Hadoop项目中的数据库。它用于需要对大量的数据进行随机、实时的读写操作的场景中。
HBase的目标就是处理数据量非常庞大的表,可以用普通的计算机处理超过10亿行数据,还可处理有数百万列元素的数据表。
Cassandra Cassandra
Apache Cassandra是一款免费的开源NoSQL数据库,其设计目的在于管理由大量商用服务器构建起来的庞大集群上的海量数据集(数据量通常达到PB级别)。在众多显著特性当中,Cassandra最为卓越的长处是对写入及读取操作进行规模调整,而且其不强调主集群的设计思路能够以相对直观的方式简化各集群的创建与扩展流程。
主要应用:社会关系,公共交通网络,地图及网络拓谱(n*(n-1)/2)
答案:A
1.文档型数据库
作为最受欢迎的NoSQL产品,文档型数据库MongoDB当仁不让地占据了第一的位置,同时它也是所有NoSQL数据库中排名最靠前的产品(总排行榜第七名)。Apache基金会的CouchDB排在第二,基于.Net的数据库RavenDB排在第三,Couchbase排在第四。
2.键值(Key-value)数据库
键值(Key-value)数据库是NoSQL领域中应用范围最广的,也是涉及产品最多的一种模型。从最简单的BerkeleyDB到功能丰富的分布式数据库Riak再到Amazon托管的DynamoDB不一而足。
在键值数据库流行度排行中,Redis不出意外地排名第一,它是一款由Vmware支持的内存数据库,总体排名第十一。排在第二位的是Memcached,它在缓存系统中应用十分广泛。排在之后的是Riak、BerkeleyDB、SimpleDB、DynamoDB以及甲骨文的Oracle NoSQL数据库。值得注意的是,Oracle NoSQL数据库上榜不久,得分已经翻番,上升势头非常迅猛。
3. 列式存储
列式存储被视为NoSQL数据库中非常重要的一种模式,其中Cassandra流行度最高,它已经由Facebook转交给到Apache进行管理,同时Cassandra在全体数据库排名中排在第十位,紧随MongoDB成为第二受欢迎的NoSQL数据库。基于Hadoop的Hbase排在第二位,Hypertable排在第三。而Google的BigTable并未列入排名,原因是它并未正式公开。
NoSQL与RDBMS的九点区别联系
1 理解ACID与BASE的区别(ACID是关系型数据库强一致性的四个要求,而BASE是NoSQL数据库通常对可用性及一致性的弱要求原则,它们的意思分别是,ACID:atomicity, consistency, isolation, durability;BASE:Basically Available, Soft-state, Eventually Consistent。同时有意思的是ACID在英语里意为酸,BASE意思为碱)
2 理解持久化与非持久化的区别。这么说是因为有的NoSQL系统是纯内存存储的。
3 你必须意识到传统有关系型数据库与NoSQL系统在数据结构上的本质区别。传统关系型数据库通常是基于行的表格型存储,而NoSQL系统包括了列式存储(Cassandra)、key/value存储(Memcached)、文档型存储(CouchDB)以及图结构存储(Neo4j)
4与传统关系数据库有统一的SQL语言操作接口不同,NoSQL系统通常有自己特有的API接口。
5 在架构上,你必须搞清楚,NoSQL系统是被设计用于成百上千台机器的集群中的,而非共享型数据库系统的架构。
6在NoSQL系统中,可能你得习惯一下不知道你的数据具体存在何处的情况。
7 在NoSQL系统中,你最好习惯它的弱一致性。”eventually consistent”(最终一致性)正是BASE原则中的重要一项。比如在Twitter,你在Followers列表中经常会感受到数据的延迟。
8 在NoSQL系统中,你要理解,很多时候数据并不总是可用的。
9 你得理解,有的方案是拥有分区容忍性的,有的方案不一定有。
(1) 确保主存储节点一旦失效就立刻切换到备用复制节点。这一般基于成熟健壮的看门狗技术 (Watch Dog),看门狗持续的监控节点,一旦发现失效就切换到健康的复制节点。
(2) 对于你的应用程序而言切换过程应尽可能透明;最理想的情况是无需更改任何配置。更高级的解决方案是仅仅修改DNS中存储节点的IP地址,确保修复过程在几秒钟之内完成。
(3) 自动切换应当基于Quorum并且是完全一致(Fully Consistent)或最终一致(Eventually Consistent)的。